
Vol. 3 of 5 FEP-02/457/2013/C Central Kowloon Route Yau Ma Tei East Contract No. HY/2014/08 September 2021

AM by mh.leung am\Drawing\Use 26-Sep-19 11:47:42 S:\6. Drauahtina Te 5 Printed

Environmental Permit No. EP-457/2013/D

Central Kowloon Route

Independent Environmental Checker Verification

Wo	rks Contract:	Yau Ma Tei East (HY/2014/08)
----	---------------	------------------------------

Reference Document/Plan

Document/ Plan to be Certified/ Verified:	Monthly EM&A Report No.42 (September 2021)		
Date of Report:	12 October 2021 (Rev.2)		
Date received by IEC:	12 October 2021		

Reference EP Condition

Environmental Permit Condition:

Submission of Monthly EM&A Report of the Project

3.4 Four hard copies and one electronic copy of monthly EM&A Report shall be submitted to the Director within 2 weeks after the end of each reporting month throughout the entire construction period. The EM&A Reports shall include a summary of all non-compliance. The submissions shall be certified by the ET Leader and verified by the IEC as complying with the requirements as set out in the EM&A Manual before submission to the Director. Additional copies of the submission shall be provided to the Director upon request by the Director.

3.4

IEC Verification

I hereby verify that the above referenced document/plan complies with the above referenced condition of EP-457/2013/D.

Mondy 20.

Ms Mandy To Independent Environmental Checker Date:

12 October 2021

Our ref: 0436942_IEC Verification Cert_YMTE_Monthly EM&A Rpt No.42.docx

Acuity Sustainability Consulting Limited

Unit C, 11/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan Kowloon, Hong Kong Tel.: (852) 2698 6833 Fax.: (852) 2333 1316

Build King – SK ecoplant Joint Venture

Central Kowloon Route Contract HY/2014/08

Section of Yau Ma Tei East

Monthly EM&A Report No. 42

(Period from 1 to 30 September 2021)

Rev. 2

(12 October 2021)

	Name	Signature
Prepared by	Katrina K.S. Chui (Assistant Environmental Consultant)	fib
Checked & Reviewed by	Nelson T. H. Tsui (Senior Environmental Consultant)	That
Approved & Certified by	Kevin W. M. Li (Environmental Team Leader)	K.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1.	BASIC PROJECT INFORMATION	7
2.	Environmental Status	. 10
3.	MONITORING RESULTS	. 12
4.	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTIONS	. 20
5.	EM&A SITE INSPECTION	. 22
6.	FUTURE KEY ISSUES	. 24
7.	CONCLUSION AND RECOMMENDATIONS	. 25

LIST OF APPENDICES

- A. Alignment and Works Area for the Contract No. HY/2014/08
- B. Construction Programme
- C. Project Organization Chart
- D. Dust Event-Action Plan (EAP)
- E. Noise Event-Action Plan (EAP)
- F. Environmental Mitigation Implementation Schedule (EMIS)
- G. Monitoring Schedules of the Reporting Month
- H. Calibration Certificate (Air Monitoring)
- I. Calibration Certificate (Noise)
- J. The Certification of Laboratory with HOKLAS Accredited Analytical Tests
- K. Location Plan of Noise and Air Quality Monitoring Station
- L. Monitoring Data (Air Monitoring)
- M. Monitoring Data (Noise)
- N. Waste Flow Table
- O. Statistics on Complaint, Notifications of Summons and Successful Prosecutions
- P. Monitoring Schedule of the Coming Month

EXECUTIVE SUMMARY

- A.1 Build King SK ecoplant Joint Venture ("Contractor") commenced the construction works of Highway Department (HyD) Central Kowloon Route Contract No. HY/2014/08 – Section of Yau Ma Tei East ("The Project") on 20 April 2018. This is the 42nd monthly Environmental Monitoring and Audit (EM&A) report presenting the EM&A works carried out during the period from 1 September 2021 to 30 September 2021.
- A.2 A summary of the construction works reported by Main Contractor for the Project during the reporting month is listed below.

Construction Activities undertaken

- Pile Piling, Underpinning of existing pile cap & tam grouting at Yau Ma Tei Police Station (YMTPS)
- Construction of D-wall panels (31 panels) at Zone B
- Site formation, predrilling, remedial works for land contamination, grout curtain wall & guide wall & D-wall at Zone B
- Construction of Stage 3 D-wall panels, soil improvement works, sheet piling at Zone C
- Demolition of Car Park Building including Advance Works and Substructure Removal
- Guide wall, D-wall and pipe piles at Zone D
- Diversion of DN900 Sewer Pipes (ELS, Excavation and Pipe Laying) along Kansu Street at Zone F/B3
- Predrilling, pipe piles & divert DN450 watermain & DN1800 Drainage at Zone G
- ELS, Excavation and Construction of Pad Footing, Piers and Portal Frame for Reprovision of Gascoigne Road Flyover (RGRF)
- CLP Cable Diversion, demolition of subway/ backfill & predrilling at Zone D
- Construct Bridge Deck including Form Traveller Assembly and Trial Panel Construction for RGRF
- A.3 A summary of regular construction noise and construction dust monitoring activities in this reporting period is listed below:

Regular construction noise monitoring du	ring normal working hours
W-N1A, W-P11, W-N18, W-N25A	5 times

Construction dust (24-hour TSP) monitoringW-A15 timesW-A65 times

Construction dust (1-hour TSP) monitoring W-A1, W-A6

15 times

A.4 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 2, 16 and 30 September 2021. Details of the audit findings and implementation status are presented in Section 5.

- A.5 Joint weekly site inspections were conducted by representatives of Environmental Team (ET), Contractor and Engineer on 2, 9, 16, 23 and 30 September 2021. One joint site inspection with IEC was also undertaken on 9 September 2021. Details of the audit findings and implementation status are presented in Section 5.
- A.6 Details of waste management are presented in Section 3.
- A.7 No exceedance of the Action and Limit Levels of 1-hour TSP, 24-hour TSP and construction noise monitoring was recorded during the reporting month.
- A.8 No complaint or non-compliance was reported in the reporting month.
- A.9 No notification of summon or prosecution was received in this reporting month.
- A.10 A summary of the construction activities provided by Main Contractor in the next reporting month is listed below:

Construction Activities to be undertaken

- Removal of bulk head wall and remaining waling & struts at Zone A
- Excavation Works including installation of waling/strut to Tunnel Roof Slab Level and lagging wall construction at Zone B EB1/WB1.
- Continue D-wall construction and construction of pipe piles in lieu of D-wall at Zone B EB2.
- Ranking Pile Deactivation at C34 for P214A and construction the last D-wall panel P214A, Continue D-wall construction at Zone C, Tam Grouting, install king posts including pumping test at Zone C3, excavate and construct temporary buttress wall at Zones C and strengthen the joints of HDPE Pipes.
- Tam grouting and underpinning of existing pile caps at YMTPS New Wing.
- Complete ELS works for construction of transfer beam and construct transfer beam for Pier P4L, continue ELS works for construction of transfer beam for P3L and resume D-wall works at Zone D1 Area following implementation of TTA stage 2 along Canton road at Zone D.
- Complete DN900 sewer diversion commence slewing of CLP Cable (11kV & LV) away from existing footpath and 750mm storm drainage diversion along Kansu Street at Zone B3 and F.
- Trial pit excavation, sheet piling and excavation for diversion of DN1800 drainage (stage 1) at Zone G.
- Works for RGRF at HKAA area: backfilling /reinstatement works and continue construction of temporary traffic deck (Part A).
- Bridge Works:
 - i. Continue construction of deck segments (GRF P5L T-Span)
 - ii. Commence pier construction for P1L and P4L
 - iii. Excavation and construction of pile cap for P6L and Pier P6L construction.
- Continue socket H-piling works for middle / east foundation and commence socket H-piling works for west side of zone 3 F02 noise enclosure. Carry out pile load test (1 tensile and 1 compressive) and commence ELS works for pile cap construction for middle foundation for F02

Construction Activities to be undertaken

Noise Enclosure.

- Trial Pit and utilities diversions at Column G of Zone 2 Noise Enclosure
- Monitoring of instrumentation for all areas.

1. BASIC PROJECT INFORMATION

- 1.1. Central Kowloon Route (CKR) is a 4.7 km long dual 3-lane trunk road in Central Kowloon linking Yau Ma Tei Interchange in West Kowloon with the road network on Kai Tak Development and Kowloon Bay in East Kowloon.
- 1.2. The Central Kowloon Route Design and Construction Environmental Impact Assessment Report (Register No.: AEIAR-171/2013) was approved with conditions by the Environmental Protection Department (EPD) on 11 July 2013. An Environmental Permit (EP 457/2013) was issued on 9 August 2013. Variations of EP (VEP) was applied for and the EP (EP-457/2013/C) was issued by EPD on 16 January 2017. A Further EP (FEP-02/457/2013/C) was issued by EPD on 5 March 2018. Variations of EP (VEP) was subsequently applied for and the latest EP (EP-457/2013/D) was issued by EPD on 15 June 2021.
- 1.3. The construction of the CKR had been divided into different sections. This Contract No. HY/2014/08 Section of Yau Ma Tei East (YMTE) covers part of the construction activities located at Yau Ma Tei under the EP and FEP which includes:
 - Section of Yau Ma Tei East
 - i. Construction of Cut-and-Cover Tunnel in compliance with all statutory requirements and the requirements specified under the Contract while maintaining the traffic with all necessary provisions
 - ii. Construction and subsequent handover of Yau Ma Tei Access Shaft for facilitating the access and use by the contractor of Central Kowloon Route -Central Tunnel contract
 - Demolition of existing buildings including Yau Ma Tei Multi-storey Carpark Building, Yau Ma Tei Specialist Clinic Extension Building and Yau Ma Tei Jade Hawker Bazaars
 - iv. Demolition and re-provisioning of Gascoigne Road Flyover(GRF) and the underpinning works for the existing Ferry Street Flyover and Yau Ma Tei Police Station New Wing Building
 - v. Construction of civil provisions and coordination with the contractor of Central Kowloon Route Tunnel Electrical & Mechanical contract
 - vi. Design and construction of Noise Barrier Works
 - vii. Prepare TTA proposals, discuss at TMLG meeting and obtain its agreement and approval/ endorsement from relevant authorities at suitable times to enable the execution of the Works

The alignment and works area for the Contract No. HY/2014/08 - are shown in Appendix A.

1.4. A summary of the major construction activities undertaken in this reporting period is shown in Table 1.1. The construction programme is presented in Appendix B.

Table 1.1 Summary of the Construction Activities reported by Main Contractor during the Reporting Month

Construction Activities undertaken

- Pile Piling, Underpinning of existing pile cap & tam grouting at YMTPS
- Construction of D-wall panels (31 panels) at Zone B
- Site formation, predrilling, remedial works for land contamination, grout curtain wall & guide wall & D-wall at Zone B
- Construction of Stage 3 D-wall panels, soil improvement works, sheet piling at Zone C
- Demolition of Car Park Building including Advance Works and Substructure Removal
- Guide wall, D-wall and pipe piles at Zone D
- Diversion of DN900 Sewer Pipes (ELS, Excavation and Pipe Laying) along Kansu Street at Zone F/B3
- Predrilling, pipe piles & divert DN450 watermain & DN1800 Drainage at Zone G
- ELS, Excavation and Construction of Pad Footing, Piers and Portal Frame for RGRF
- CLP Cable Diversion, demolition of subway/ backfill & predrilling at Zone D
- Construct Bridge Deck including Form Traveller Assembly and Trial Panel Construction for RGRF
 - 1.5. The project organisational chart specifying management structure and contact details are shown in Appendix C.
 - 1.6. A summary of the valid permits, licences, and /or notifications on environmental protection for this Project is presented in Table 1.2.

Permit/ Licences/	Valid	Period		
Notification /Reference No.	From	То	Status	Remark
Environmental Permit				
EP-457/2013/D	15 Jun 2021	End of Project	Valid	-
Further Environmental I	Permit			
FEP-02/457/2013/C	5 Mar 2018	End of Project	Valid	
Wastewater Discharge Li	cense			
WT00030660-2018	28 Mar 2018	31 Mar 2023	Valid	-
Notification of Constructi	on Works under	the Air Pollution	n Control (Constructi	on Dust) Regulation
429806	18 Jan 2018	End of Project	Notified	-
Chemical Waste Producer Registration				
WPN5213-225-B2526-01	14 Mar 2018	End of Project	Valid	-
Billing Account for Disposal of Construction Waste				
7029997	1 Feb 2018	End of Project	Valid	-
Construction Noise Permit				

Notification, Permit and Documentations

Permit/ Licences/	Valid	Period		
Notification /Reference No.	From	То	Status	Remark
GW-RE0333-21	8 Apr 2021	7 Oct 2021	Valid	Construction Noise Permit at Zone A, B
GW-RE0683-21	12 Jul 2021	11 Jan 2022	Valid	Construction Noise Permit at Zone 3
GW-RE0389-21	22 Apr 2021	20 Oct 2021	Valid	Construction Noise Permit at Multi-storey Car Park Building
GW-RE0406-21	28 Apr 2021	20 Oct 2021	Valid	Construction Noise Permit at Zone D & G
GW-RE0741-21	4 Aug 2021	29 Oct 2021	Valid	Construction Noise Permit at Formtraveller Erection at Shanghai Street
GW-RE0613-21	22 Jun 2021	21 Sep 2021	Valid Until 21 Sep 2021	Construction Noise Permit at Gascoigne road Flyover near Yau Ma Tei Car Park Building
GW-RE0665-21	9 Jul 2021	8 Nov 2021	Valid	Construction Noise Permit at Zone C & B2
GW-RE0681-21	9 Jul 2021	8 Oct 2021	Superseded by GW-RE0962-21	Construction Noise
GW-RE0962-21	24 Sep 2021	23 Nov 2021	Valid from 24 Sep 2021	Permit at Shanghai Street for Bridge Works
GW-RE0764-21	12 Aug 2021	11 Nov 2021	Valid	Construction Noise Permit at Jade Hawker Bazaar Building
GW-RE0881-21	10 Sep 2021	9 Mar 2022	Valid from 10 Sep 2021	Construction Noise Permit at Zone 3
Marine Dumping Permit	1	1		
EP/MD/21-111	8 Mar 2021	7 Sep 2021	Valid Until 7 Sep 2021	Type 1- Open Sea
EP/MD/22-051	8 Sep 2021	7 Mar 2022	Valid from 8 Sep 2021	Disposal

2. ENVIRONMENTAL STATUS

2.1. Environmental permit (EP) conditions under the EIAO, submission status under the EP and implementation status of mitigation measures had been reviewed and implemented on schedule. The status of required submissions under the EP (EP-457/2013/D) and FEP (FEP-02/457/2013/C) as of the reporting period for the Project are summarised in Table 2.1

Table 2.1 Summary of Status of Required Submission for EP-457/2013/D and

EP/FEP Condition (EP-457/2013/D) (FEP-02/457/2013/C)	Submission	Submission date
Condition 3.4	Monthly EM&A Report (Aug 2021)	14 Sep 2021

FEP-02/457/2013/C for the Project

2.2. Details of the major construction activities reported by Main Contractor in this reporting period are shown in Table 2.2.

Table 2.2 Summary of the Construction Activities reported by Main Contractor during the

Construction activities undertaken	Remarks on progress
• Pile Piling, Underpinning of existing pile cap & tam grouting at YMTPS	•72% completion
Construction of D-wall panels (31 panels) at Zone B	•98% completion
• Site formation, predrilling, remedial works for land contamination, grout curtain wall & guide wall & D-wall at Zone B	•72% completion
• Construction of Stage 3 D-wall panels, soil improvement works, sheet piling at Zone C	•93% completion
Demolition of Car Park Building including Advance Works and Substructure Removal	•Completed
• Guide wall, D-wall and pipe piles at Zone D	•75% completion
• Diversion of DN900 Sewer Pipes (ELS, Excavation and Pipe Laying) along Kansu Street at Zone F/B3	•70% completion
Predrilling, pipe piles & divert DN450 watermain & DN1800 Drainage at Zone G	•46% completion
• ELS, Excavation and Construction of Pad Footing, Piers and Portal Frame for RGRF	•83% completion
• CLP Cable Diversion, demolition of subway/ backfill & predrilling at Zone D	•64% completion
Construct Bridge Deck including Form Traveller Assembly and Trial Panel Construction for RGRF	•44% completion

2.3. The drawing showing the project layout and the location of the monitoring station and environmental sensitive receivers are attached in Appendix A and Appendix K. Co-ordinates of the monitoring location are shown in Table 2.3.

Monitoring Location	Location ID	Latitude	Longitude
Yau Ma Tei Catholic Primary School (Hoi Wang Road)	W-A1/ W-N1A	22.313357	114.16409
Man Cheong Building	W-A6	22.308185	114.166033
Hydan Place	W-N18	22.30858	114.170185
Prosperous Garden Block 1	W-N25A	22.309846	114.168072
The Coronation Tower 1	W-P11	22.309824	114.165616

Table 2.3 Summary for the location of the monitoring station

3. MONITORING RESULTS

3.1. Monitoring Parameters

Air Quality

- 3.1.1. The impact monitoring had been carried out in accordance with section 5.8 of the approved EM&A Manual to determine the 1-hour and 24-hour total suspended particulates (TSP) levels at the monitoring locations in the reporting month.
- 3.1.2. The sampling frequency of at least once in every 6 days, shall be strictly observed at the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least 3 times in every 6 days should be undertaken when the highest dust impact occurs.
- 3.1.3. General meteorological conditions (wind speed, direction and precipitation) and notes regarding any significant adjacent dust producing sources had also been recorded throughout the impact monitoring period.

<u>Noise</u>

- 3.1.4. Construction noise level shall be measured in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}). Leq (30min) shall be used as the monitoring parameter for the time period between 0700 and 1900 hours on normal weekdays.
- 3.1.5. For all other time periods, Leq (5min) shall be employed for comparison with the Noise Control Ordinance (NCO) criteria.
- 3.1.6. As supplementary information for data auditing, statistical results such as L_{10} and L_{90} shall also be obtained for reference.
- 3.2. Monitoring Equipment

Air Quality

- 3.2.1. 1-hour TSP levels and 24-hour TSP had been measured with direct reading dust meter and High Volume Samplers respectively. It has been demonstrated its capability in achieving comparable results with high volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50).
- 3.2.2. The 1-hour TSP meter was calibrated by the manufacturer prior to purchasing. Zero response of the instrument was checked before and after each monitoring event. Operation of the 1-hour TSP meter followed manufacturer's Operation and Service Manual. The 24-hour TSP meter was calibrated against firmware 80570-8100-V1.0.4, annually. Operation of the 24-hour TSP meter followed manufacturer's Operation and Service Manual. Valid calibration certificates of dust monitoring equipment are attached in Appendix H.
- 3.2.3. A summary of the equipment that was deployed for the 24- hour averaged monitoring is shown in Table 3.1. The TSP monitoring was conducted as per the schedule presented in Appendix G.

3.2.4. The equipment used for 1-hour TSP and 24-hour TSP measurement and calibration are summarised in Table 3.1

Monitoring Parameter	Monitoring Equipment	Serial Number	Date of Calibration
1 hour TCD	LD-5R Digital Dust Indicator	761174	1 Jul 2021
1-hour TSP	LD-5R Digital Dust Indicator	761173	1 Jul 2021
24-hour TSP TE-5170X High Volume		1084	6, 23 Sep 2021
Sampler			
	TE-5170X High Volume	1050	6, 23 Sep 2021
	Sampler		
TE-5028A Calibration Kit		3702	3 Aug 2021

Table 3.1 Construction Dust Monitoring Equipment

<u>Noise</u>

- 3.2.5. Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications has been used for carrying out the noise monitoring. The sound level meter has been checked using an acoustic calibrator. The wind speed and other metrological data has been recorded from Hong Kong Observatory- King's Park meteorological station, along with portable wind speed meter stand by as back up when the information are not available from HKO.
- 3.2.6. An acoustic calibrator and sound level meter using for the monitoring is within the valid period and were calibrated per year. Valid calibration certificate of noise monitoring equipment is attached in Appendix I.
- 3.2.7. The details of equipment using for monitoring are listed in Table 3.2, as below:

Monitoring Equipment	Serial Number	Date of Calibration
Nti XL2 Sound Level Meter	A2A-13548-E0	12 Dec 2020
Svantek 33B Acoustic Calibrator	83042	20 Mar 2021

Table 3.2 Monitoring Equipment Used in Monitoring

3.3. Monitoring Methodology and QA/QC results

Air Quality

- 3.3.1. The 1-hour TSP monitor, portable dust meters (Sibata Digital Dust Indicator Model LD-5R) was used for the impact monitoring. The 1-hour TSP meters provides a real time 1-hour TSP measurement based on 90° light scattering. Three 1-hour TSP level were logged per every six days.
- 3.3.2. The 24-hour TSP monitor, High Volume Samplers (Tisch TE-5170X High Volume Air Sampler) were used for the impact monitoring. The 24-hour TSP monitoring consists of the following:
 - The HVS was set at the monitoring location, with electricity supply connected and secured;

- HVS was calibrated before commencing the 1st measurement;
- The filter paper was weight and provided by HOKLAS lab (Acumen Laboratory and Testing Limited and ALS Technichem (HK) Pty Ltd) before and after the sampling. Certificate of HOKLAS accredited laboratory can be referred to Appendix J;
- The airflow over time during sampling process was recorded by the HVS.
- 3.3.3. HVSs were free-standing with no obstruction. The following criteria were considered in the installation of the HVS:
 - Appropriate support to secure the samples against gusty wind needed to be provided the monitoring station;
 - A minimum of 2m separation from walls, parapets and penthouses was required for rooftop samplers;
 - No furnace or incinerator flues was nearby;
 - Airflow around the sampler was unrestricted; and
 - Permission could be obtained to set up the samplers and gain access to the monitoring station.
- 3.3.4. Preparation of Filter Papers
 - Glass fiber filters were labelled and sufficient filters that were clean and without pinholes were selected;
 - ♦ All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25°C and not varied by more than ±3°C; the relative humidity (RH)was 40%; and
 - Acumen Laboratory and Testing Limited and ALS Technichem (HK) Pty Limited, as HOKLAS accredited laboratory, implemented comprehensive quality assurance and quality control programmes on the filters.
- 3.3.5. Field Monitoring
 - The power supply was checked to ensure that the HVS was working properly;
 - The filter holder and area surrounding the filter were cleaned;
 - The filter holder was removed by loosening the foul bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully;
 - The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
 - The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges;
 - The shelter lid was closed and secured with an aluminum strip;
 - The HVS was warmed- up for about 5 minutes to establish run- temperature conditions;
 - A new flow rate record sheet was inserted into the flow recorder;
 - ◆ The flow rates of the HVS was checked and adjusted to between 0.78-1.69m³min⁻¹, which was within the range specified in the EM&A Manual (i.e. 0.6- 1.7m³min⁻¹);
 - The programmable timer was set for a sampling period of 24 hours, and the starting time, weather condition and filter number were recorded;
 - The initial elapsed time was recorded;

- At the end of sampling, the sampled filter was removed carefully and folded in half so that only surfaces with collected particulate matter were in contact;
- The filter paper was placed in a clean plastic envelope and sealed; all monitoring information was recorded on a standard data sheet and
- The filters were sent to (Acumen Laboratory and Testing Ltd and ALS Technichem (HK) Pty Ltd) for analysis.

3.3.6. Maintenance and Calibration

- The HVS and their accessories were maintained in a good working condition. For example, motor brushes were replaced routinely and electrical wiring was checked to ensure a continuous power supply; and
- ♦ The flow rate of each HVS with mass flow controller was calibrated using an orifice calibrator, Initial calibrations of the dust monitoring equipment were conducted upon installation and prior to commissioning. Five- point calibration was carried out for HVS using TE-5025 Calibration Kit. HVS is calibrated bimonthly. The calibration records for the HVS is given in Appendix H.
- 3.3.7. Wind Data Monitoring
 - The wind speed has been recorded from Hong Kong Observatory- King's Park meteorological station, along with portable wind speed meter stand by as back up when the information are not available from HKO.

<u>Noise</u>

- 3.3.8. All noise measurements by the meter were set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}) in decibels dB(A). $L_{Aeq(30min)}$ was used as the monitoring metric for the time period between 0700 –1900 hours on normal weekdays. The measured noise levels were logged every 5 minutes throughout the monitoring period.
- 3.3.9. Prior to the noise measurement, the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Checking was conducted before and after the monitoring. The calibration level before and after the noise measurement is agreed to within 1.0 dB(A).
- 3.3.10. Noise measurements should not be made in presence of fog, rain, wind with a steady speed exceeding 5 ms⁻¹ or wind with gusts exceeding 10 ms⁻¹. The wind speed was checked with a portable wind speed meter capable of measuring with speeds in ms⁻¹.
- 3.4. Monitoring Locations

Air Quality

3.4.1. During the site visit, both of the original proposed dust monitoring locations were rejected due to the condition at The Coronation was not favorable for monitoring and the access was declined by the management office of Hong Kong Community College (HKCC) of PolyU. Two alternative air monitoring stations Yau Ma Tel Catholic Primary School (Hoi Wang Road) and Man Cheong Building had been proposed by ET and

approved by IEC. 2 designated air monitoring locations were identified and agreed with IEC and EPD. Details of air monitoring stations are described in Table 3.3. The location plan of air quality monitoring stations is shown in Appendix K.

Air Quality Monitoring Station	Dust Monitoring Station
W-A1	Yau Ma Tei Catholic Primary School (Hoi Wang Road)
W-A6	Man Cheong Building

Table 3.3 Location of the Dust Monitoring Stations
--

<u>Noise</u>

3.4.2. During the site visit, one of the original proposed noise monitoring locations Tak Cheong Building was rejected by the president of the owner's corporation. Alternative noise monitoring station Hydan place had been proposed by ET and approved by IEC. 4 noise sensitive receivers designated noise monitoring locations were identified and agreed with IEC and EPD. The designated monitoring stations are identified and access was granted by the premises. The details of noise monitoring stations are described in Table 3.4 and the location plan of noise monitoring station is shown in Appendix K.

0		
Noise Monitoring Station	Identified Noise Monitoring Station	Type of Measurement
W-N1A	Yau Ma Tei Catholic Primary School (Hoi Wang Road)	Façade
W-N18	Hydan Place	Façade
W-N25A	Prosperous Garden Block 1	Façade
W-P11	The Coronation Tower 1	Façade

- 3.5. Monitoring date, time, frequency and duration
- 3.5.1. A summary of impact monitoring duration, sampling parameter and frequency is presented in Table 3.5.

Impact Monitoring	Duration	Sampling Parameter	Frequency
Dust	1-hour continuous measurement	1-hour TSP	3 times per six days
Dust	24-hour continuous sampling	24-hour TSP	Once per six days

Impact Monitoring	Duration	Sampling Parameter	Frequency
Noise	30-minute continuous measurement	$L_{eq 30 min}$, L_{10} and L_{90} as reference.	Once per week (0700 – 1900)

3.6. Result Summary

Air Quality

3.6.1. According to our field observations, the major dust source identified at the designated air quality monitoring stations in the reporting month are summarised in Table 3.6.

Monitoring Station	Major Dust Source	
W-A1	Nearby traffic	
W-A6	Nearby traffic	

Table 3.6 Observation at Dust Monitoring Stations

- 3.6.1. Air quality impact monitoring for the reporting month was carried out on 6, 11, 17, 23 and 28 September 2021.
- 3.6.2. The results for 1-hour TSP and 24-hour TSP are summarized in Table 3.7 and Table 3.8. The measurement data and details of influencing factors such as weather conditions and site observation are presented in Appendix L.

Table 3.7 Summary of 1-hour TSP Monitoring Results

Monitoring Location	Range(µg/m ³)	Action Level(µg/m3)	Limit Level(µg/m3)
W-A1	46-68	319	500
W-A6	59-74	306	500

Table 3.8 Summary of 24-hour TSP Monitoring Results			
Monitoring Location	Range(µg/m ³)	Action Level(µg/m3)	Limit Level(µg/m3)
W-A1	22-57	167	260
W-A6	21-96	166	260

Noise

3.6.3. According to our field observations, the major noise source identified at the designated noise monitoring station in the reporting month are summarised in Table 3.9:

Monitoring Station	Major Noise Source	
W-N1A	Nearby traffic	
W-N18	Nearby traffic	
W-N25A	Nearby traffic	
W-P11	Nearby traffic	

Table 3.9 Observation at Noise Monitoring Stations

3.6.4. The construction noise impact monitoring for the reporting month was carried out on 6, 11, 17, 23 and 28 September 2021.

3.6.5. The result for noise monitoring is summarized in Table 3.10. The measurement data are shown in Appendix M.

Time	Monitoring	Parameter		Range, dB(A)			
Period	location		L _{eq}	L ₁₀	L90	Action Level	Limit Level#
Normal working hour from 0700-1900	W-N1A	Leq 30min	57.0-60.8	59.6-63.0	54.0-58.2		70dB(A) or 65 dB(A) during examination
	W-N18		69.4-71.4	73.0-73.8	66.8-68.6	When one documented	75dB(A)#
	W-N25A		70.9-71.9	75.1-75.8	68.5-69.5	complaint is received	
	W-P11		68.6-71.8	70.6-74.8	66.6-68.7		

Remarks: 1. # If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit by the Noise Control Authority have to be followed.

2. No examination was held at W-N1A so limit levels for all monitoring days were 70 dB(A).

Waste management

3.6.6. The waste generated from this Project includes inert C&D materials, and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes such as plastics and paper/cardboard packaging waste. Steel materials generated from the project are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in Table 3.11. Details of cumulative waste management data are presented as a waste flow table in Appendix N.

	Quantity						
		Chemical Waste (in'000 Kg)	Non-inert C&D Materials				
	Materials Waste		Others,	Deer	cycled materials		
			e.g.	Kecy			
Demonstrat			General				
Reporting period			Refuse				
			disposed				
			at	Paper/card board	Plastics	Metals	
			Landfill	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	
			(in				
			'tonnes)				
Sep-2021	8633.3	0.0	50.1	0.1	0.0	0.0	

Table 3.11 Quantities of waste generated from the Project

4. SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTIONS

4.1. The Environmental Complaint Handling Procedure is shown in below Table 4.1:

Table 4.1 Environmental Complaint Handling Procedure							
Complaint Received via	Project Hotline	Complaint Received via 1823 or from other					
		government departments					
Contractor notify ER, ET	and IEC	ER notify Contractor, ET and IEC					
Contractor log complair	Contractor log complaint and date of receipt onto the complaint database. Contractor, ER and ET to						
Contractor log comptain	-	ation of complaint					
	1 . 11 1						
If complaint is considere	d not valid	If complaint is found valid					
Γ							
ET or ER to reply the con	mplainant if necessary	Contractor to identify and implement remedia					
		measures in consultation with the IEC, ET and					
		ER.					
		The ER, ET and IEC to review the effectiveness					
		of the Contractor's remedial measures and the					
		updated situation; ET to undertake additiona					
		monitoring and audit to verify the situation i					
		necessary, and oversee that circumstances leading					
		to the complaint do not recur. ER to conduct					
		further inspection as necessary.					
If the complaint is referred by the EPD, the Contractor to prepare interim report on the status of the							
complaint investigation and follow-up actions stipulated above, including the details of the remedial							
measures and additional monitoring identified or already taken, for submission to EPD within the							
	-	igned by the EPD					
L		<u> </u>					
The ET to record the deta	ails of the complaint. res	ults of the investigation, subsequent actions taken to					
address the complaint and updated situation including the effectiveness of the remedial measures,							
supported by regular and additional monitoring results in the monthly EM&A reports							

Table 4.1 Environmental Complaint Handling Procedure

- 4.2. Should non-compliance of the criteria occur, action in accordance with the Event and Action Plan in Appendix D and Appendix E shall be carried out.
- 4.3. No exceedance of the Action and Limit Levels of 1-hour TSP, 24-hour TSP and construction noise monitoring was recorded during the reporting month.
- 4.4. No complaint or non-compliance was reported in the reporting month.
- 4.5. No notification of summons and prosecution was received in the reporting period.
- 4.6. Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix O.

5. EM&A SITE INSPECTION

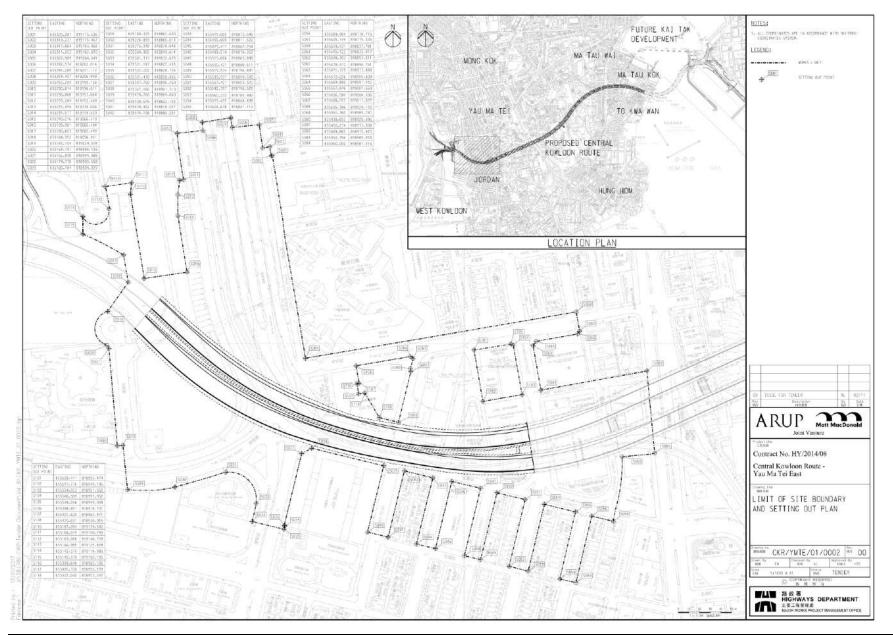
- 5.1. Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting period, five (5) site inspections were carried out on 2, 9, 16, 23 and 30 September 2021, along with bi-weekly inspection of the implementation of landscape and visual mitigation measures conducted on 2, 16 and 30 September 2021.
- 5.2. One joint site inspection with IEC also undertaken on 9 September 2021. Minor deficiencies were observed during weekly site inspection. Key observations during the site inspections are summarized in Table 5.1.

Date	Environmental Observations	Follow-up Status
2 September 2021	 The NRMM label of drilling rig was not observed at Zone 3. The chemical containers were not placed on drip tray. The noise barriers were not properly installed at Zone D. 	 The NRMM label of drilling rig had been posted at Zone 3. The chemical containers had been placed on drip tray and reused for material storage. The noise barriers had been properly installed at Zone D.
9 September 2021	 The NRMM label on mobile crane at Zone D2 was not observed. The chemical containers at Zone C were not placed on drip tray. The noise barriers at Zone D were not properly installed. 	 The NRMM label on mobile crane had been posted at Zone D2. The chemical containers had been placed on drip tray at Zone C. The noise barriers at Zone D had been properly installed.
16 September 2021	 At Zone D, chemical in use should be placed on drip tray. At Zone C, the sound proof door of the air compressor should be closed. 	 At Zone D, chemical had been placed on drip tray. At Zone C, the sound proof door of the air compressor had been closed.
23 September 2021	 Stockpile of dusty material at Zone B2 was observed not being covered by impervious sheeting. The chemical containers were observed not being placed on drip tray at Portion 26. 	 Stockpile of dusty material at Zone B2 had been removed. The chemical containers had been placed on drip tray at Portion 26.
30 September 2021	 NRMM labels for excavator and crane crawler at Zone 3 were not in good condition. 	1. The excavator was left. NRMM label for crane crawler at Zone 3 had been posted.

Table 5.1 Site Observations

5.3. The Contractor had rectified all observation identified during environmental site inspection in the reporting period.

5.4. According to the EIA Study Report, Environmental Permit, contract documents and EM&A Manual, the mitigation measures detailed in the documents are implemented as much as practical during the reporting period. An updated Implementation Status of Environmental Mitigation Measures (EMIS) is provided in Appendix F.

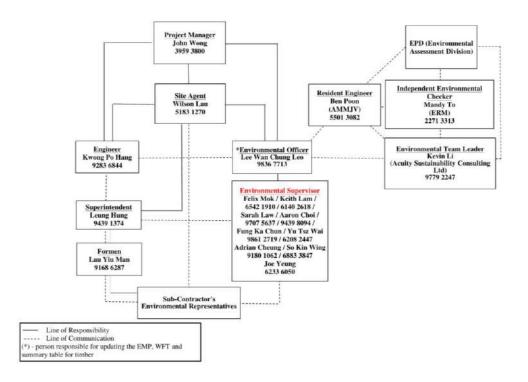

6. **FUTURE KEY ISSUES**

- 6.1. The construction activities provided by Main Contractor in the next reporting month are:
- Removal of bulk head wall and remaining waling & struts at Zone A
- Excavation Works including installation of waling/strut to Tunnel Roof Slab Level and lagging wall construction at Zone B EB1/WB1.
- Continue D-wall construction and construction of pipe piles in lieu of D-wall at Zone B EB2.
- Ranking Pile Deactivation at C34 for P214A and construction the last D-wall panel P214A, Continue D-wall construction at Zone C, Tam Grouting, install king posts including pumping test at Zone C3, excavate and construct temporary buttress wall at Zones C and strengthen the joints of HDPE Pipes.
- Tam grouting and underpinning of existing pile caps at YMTPS New Wing.
- Complete ELS works for construction of transfer beam and construct transfer beam for Pier P4L, continue ELS works for construction of transfer beam for P3L and resume D-wall works at Zone D1 Area following implementation of TTA stage 2 along Canton road at Zone D.
- Complete DN900 sewer diversion commence slewing of CLP Cable (11kV & LV) away from existing footpath and 750mm storm drainage diversion along Kansu Street at Zone B3 and F.
- Trial pit excavation, sheet piling and excavation for diversion of DN1800 drainage (stage 1) at Zone G.
- Works for RGRF at HKAA area: backfilling /reinstatement works and continue construction of temporary traffic deck (Part A).
- Bridge Works:
 - i. Continue construction of deck segments (GRF P5L T-Span)
 - ii. Commence pier construction for P1L and P4L
 - iii. Excavation and construction of pile cap for P6L and Pier P6L construction.
- Continue socket H-piling works for middle / east foundation and commence socket H-piling works for west side of zone 3 F02 noise enclosure. Carry out pile load test (1 tensile and 1 compressive) and commence ELS works for pile cap construction for middle foundation for F02 Noise Enclosure.
- Trial Pit and utilities diversions at Column G of Zone 2 Noise Enclosure
- Monitoring of instrumentation for all areas.
- 6.2. Potential environmental impacts arising from the above construction activities are mainly associated with dust, construction noise and waste management.
- 6.3. The tentative schedule of regular construction noise monitoring, 1-hour TSP and 24-hour TSP monitoring in the next reporting period is presented in Appendix P.
- 6.4. The construction programme for the Project for the next reporting month is presented in Appendix B.

7. CONCLUSION AND RECOMMENDATIONS

- 7.1. This 42nd monthly EM&A Report presents the EM&A works undertaken during the period from 1 September 2021 to 30 September 2021 in accordance with the EM&A Manual and the requirement under EP- 457/2013/D and FEP-02/457/2013/C.
- 7.2. Air quality (including 1-hour TSP and 24-hour TSP) and noise impact monitoring were carried out in the reporting period. No exceedance of the Action Level and Limit Level was recorded for construction noise and air quality impact monitoring during the reporting month.
- 7.3. Weekly environmental site inspections were conducted during the reporting period. Joint site inspection with IEC were carried out on 9 September 2021. Minor deficiency was observed during site inspection and was rectified within the specified deadlines. The environmental performance of the Project was therefore considered satisfactory.
- 7.4. No complaint or non-compliance was reported in the reporting month.
- 7.5. No notification of summons or prosecution was received in the reporting month.
- 7.6. The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Appendix A Alignment and Works Area For the Contract No. HY/2014/08


Acuity Sustainability Consulting Ltd.

Appendix B Construction Programme

	Cons	struction Pr	ogramme	
Activity Name	Duration	n Start	Finish	2021 2022 2023 2024 2025 2026 sondifemamijiasondifemamijiasondifemamijiasondifemamijiasondifemamijia
HY/2014/08 Central Kowloom Route - Yau Ma Tei East	2990	17-Jan-18	25-Mar-26	
Construction Works	2990	17-Jan-18	25-Mar-26	
Temporary Thilfive Management in Underground (Portion 11 do 12)	1651	29-Sep-19	5-Apr-24	
Works on WMUSE first and Construct Assessible Ramy and Refuse Cohestion Area for Methodome Climic	633	25-Dec-19	17-Sep-21	
Provision of Methadone Clime	1336	17-Jun-18	13-Sep-21	
Works on Normera & Southera Parts of YMT Multi-Steney Car Park Building	\$32	14-Sep-21	27-Peb-23	
Demolition of Muthem Person IX, YMP Multi-Stoney Car Dark Building	418	23-04-20	13-Sep-21	
Demolition of Scottern Part of Ex. MMP Molite-Storey Cir. Park Building		27-Aug-22		
All Works within JWITSC, Muntemater Depet Area, Biblie Square St/Kausu St Rest Garden, Access Road	2425	13-Jan-18	7-Sep-24	
Preservation and Protection of Existing Press	2510	17-Jan-18	30-Nev-24	
Ionathsiment Works		6-Eeb=23	5-Feb-20	
edi Works in Ushkegerina		21-Jan-22	28-Dec-24	
Completion of Noise Englishes	1515	26-Aug-20	18-Oct-24	
All Remaining Works are Covered in Other Section		6-Jun-18	5-Feb-25	
Construction of IGMC Found Chistonia	2263	12-Jan-18	28-Min-24	
Construction of GMC Transf Westfound	2513	17-Jan-18	3-Dec-24	
Cloir Tunnel Works within Porton 13 & 20A, Cuilde-say at Porton 20D & 14	1426	7-Apr-18	2-Mar-22	
GRI Removationary	1603	16-Dec-19	S-May-28	
Completion of Estadingon Wales and Root Slade of CASE Lannais within Portion 21 and 28	τ.	18-Feb-22	18-Feb-22	

Appendix C Project Organization Chart

Appendix D Dust Event-Action Plan (EAP)

Contract No. HY/2014/08 Environmental Monitoring & Auditing

	ACTION							
EVENT	ET	IEC	ER	CONTRACTOR				
ACTION LEVEL								
1.Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 				
2.Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				
LIMIT LEVEL	·							
1.Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and 	 Check monitoring data submitted by ET; Check Contractor's working method; 	 Confirm receipt of notification of failure in writing; Notify Contractor; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC 				

	ACTION			
EVENT	ET	IEC	ER	CONTRACTOR
	 EPD; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily; 5. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	3. Ensure remedial measures properly implemented.	 within 3 working days of notification; Implement the agreed proposals; 4. Amend proposal if appropriate.
2.Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Note:

ET – Environmental Team

ER – Engineer's Representative

IEC – Independent Environmental Checker

Appendix E Noise Event-Action Plan (EAP)

EVENT		ACTIO	DN	
	ET	IEC	ER	CONTRACTOR
Action Level	 Identify source, investigate the causes of exceedance and propose remedial measures; Notify IEC and Contractor; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IEC, ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of

EVENT		ACTIO	DN	
	ET	IEC	ER	CONTRACTOR
	possible mitigation to be		properly implemented;	works as determined by the ER
	implemented;		5. If exceedance continues,	until the exceedance is abated.
	6. Inform IEC, ER and EPD the		consider what portion of the	
	causes and actions taken for the		work is responsible and	
	exceedances;		instruct the Contractor to	
	7. Assess effectiveness of		stop that portion of work	
	Contractor's remedial actions		until the exceedance is	
	and keep IEC, EPD and ER		abated.	
	informed of the results;			
	8. If exceedance stops, cease			
	additional monitoring.			

Note:

ET – Environmental Team

IEC – Independent Environmental Checker

ER – Engineer's Representative

Appendix F Environmental Mitigation Implementation Schedule (EMIS)

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
			Constru	ction Dust Impact				
\$4.3.10	D1	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	 APCO To control the dust impact To meet HKAQO and TM-EIA criteria 	 Implemented, deficiency rectified after observation.
\$4.3.10	D2	 Mitigation measures in form of regular watering under a good site practice should be adopted. Watering once per hour on exposed worksites and haul road should be conducted to achieve dust removal efficiencies of 91.7%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.3 L/m² to achieve the dust removal efficiency. 	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	 APCO To control the dust impact To meet HKAQO and TM-EIA criteria 	Implemented
\$4.3.10	D3	 Proper watering at exposed spoil should be undertaken throughout the construction phase; Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads; A stockpile of dusty material should not be 	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	 APCO To control the dust impact To meet HKAQO and TM-EIA criteria 	 Implemented, deficiency rectified after observation.

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		 extended beyond the pedestrian barriers, fencing or traffic cones; The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle. Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided and properly maintained as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period; The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical 						

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
\$4.3.10	D6	 continuously; Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Any skip hoist for material transport should be totally enclosed by impervious sheeting; Every stock of more than 20 bags of cement or dry-pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides; Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabilizer within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. Implement regular dust monitoring under EM&A programme during the construction stage. 	Monitoring of dust impact	Contractor	Selected rep. dust	Construction stage	• TM-EIA	• Implemented
		programme during the construction stage.	dust impact		dust monitoring station			
			Construc	tion Noise (Airborn	e)			

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
S5.4.1	N1	 Implement the following good site practices: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; Mobile plant should be sited as far away from NSRs as possible and practicable; Material stockpiles, mobile container site office and other structures should be effectively utilized, where practicable, to screen noise from on-site construction activities. 	Control construction airborne noise	Contractor	All construction sites	Construction stage	• Annex 5, TM-EIAO	• Implemented
S5.4.1	N2	Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of hoardings shall be properly maintained throughout the construction period.	Reduce the construction noise levels at low-level zone of NSRs through partial screening	Contractor	All construction sites	Construction stage	• Annex 5, TM-EIAO	Implemented
S5.4.1	N3	Install movable noise barriers (typical design is wooden framed barrier with a small-cantilevered on a skid footing with 25mm thick internal sound absorptive lining), acoustic mat or full enclosure,	Sreen the noisy plant items to be used at all	Contractor	All construction sites where practicable	Construction stage	• Annex 5, TM-EIAO	 Implemented, deficiency rectified after observation.

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		screen the noisy plants including air compressors, generators and handheld breakers, etc.	sites					
S5.4.1	N4	Use 'Quiet plant'	Reduce the noise levels of plant items	Contractor	All construction sites where practicable	Construction stage	• Annex 5, TM-EIAO	Implemented
\$5.4.1	N5	Loading/ unloading activities should be carried out inside the full enclosure of mucking out points.	Reduce the noise levels of loading/ unloading activities	Contractor	Mucking out locations	Construction stage	• Annex 5, TM-EIAO	Implemented
S5.4.1	N6	Sequencing operation of construction plants where practicable.	Operate sequentially within the same work site to reduce the construction airborne noise	Contractor	All construction sites where practicable	Construction stage	• Annex 5, TM-EIAO	Implemented
S5.4.1	N7	Implement a noise monitoring programme under EM&A programme.	Monitor the construction noise levels at the selected representative locations	Contractor	Selected rep. noise monitoring station	Construction stage	• TM-EIAO	Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
S6.9.1.1	W1	 In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN1/94), construction phase mitigation measures shall include the following: Construction Runoff At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system will be undertaken by the contractor prior to the commencement of construction; The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be incorporated in the permanent drainage channels to enhance deposition rates; The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/ sand traps should be 5 minutes under 	To minimize water quality impact from the construction site runoff and general construction activities	Contractor	All construction sites where practicable	Construction stage	 Water Pollution Control Ordinance ProPECC PN 1/94 TM-EIAO TM-DSS 	• Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		 maximum flow conditions. Sizes may vary depending upon the flow rate, but for a flow rate of 0.1 m3/s a sedimentation basin of 30 m3 would be required and for a flow rate of 0.5 m3/s the basin would be 150 m3. The detailed design of the sand/ silt traps shall be undertaken by the contractor prior to the commencement of construction; All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. Exposed slope surfaces should be covered by tarpaulin or other means; The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows, and all traffic areas and access roads protected by coarse stone ballast. An additional advantage accruing from the use of crushed stone is the positive traction gained during prolonged periods of inclement weather and the reduction of surface sheet flows; All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas; Measures should be taken to minimize the ingress 						

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		 of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities; Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m3 should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system; Manholes should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers; Precautions be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes; All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and site wheel washing 						

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		 facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel wash bay to the public road should be paved with sufficient backfall toward the wheel wash bay to prevent vehicle tracking of soil and silty water to public roads and drains; Oil interceptors should be provided in the drainage system downstream of any oil/ fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain; Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts; All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby; Adopt best management practices; All earth works should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet 						

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		season (April to September) as far as practicable.						
\$6.9.1.2	W2	 Tunneling Works and Underground Works Cut-&-cover tunneling work should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. Uncontaminated discharge should pass through sedimentation tanks prior to off-site discharge; The wastewater with a high concentration of SS should be treated (e.g. by sedimentation tanks with sufficient retention time) before discharge. Oil interceptors would also be required to remove the oil, lubricants and grease from the wastewater; Direct discharge of the bentonite slurry (as a result of D-wall) is not allowed. It should be reconditioned and reused wherever practicable. Temporary storage locations (typically a properly closed warehouse) should be provided on site for any unused bentonite that needs to be transported away after all the related construction activities area completed. The requirements in ProPECC PN 1/94 should be adhered to in the handling and disposal of bentonite slurries. 	To minimize construction water quality impact from tunneling works	Contractor	All tunneling portion	Construction stage	 Water Pollution Control Ordinance ProPECC PN 1/94 TM-DSS TM-EIAO 	• Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
\$6.9.1.3	W3	 Sewage Effluent Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance. 	To minimize water quality from sewage effluent	Contractor	All construction sites where practicable	Construction stage	 Water Pollution Control Ordinance TM-DSS 	Implemented
\$6.9.1.5	W4	 Groundwater from Potential Contaminated Area: No direct discharge of groundwater from contaminated areas should be adopted. A discharge license under the WPCO through the Regional Office of EPD for groundwater discharge should be applied. Prior to the excavation works within these potentially contaminated areas, the groundwater quality should be reviewed during the process of discharge license application. The compliance to the Technical Memorandum on Standards for Effluents Discharged into Drainage on Sewerage Systems, Inland and Coastal Waters (TM-DSS) and the existence of prohibited substance should be confirmed. If the review results indicated that the groundwater to be generated from the excavation works would be contaminated, the contaminated groundwater should be either properly treated in compliance with the requirements of the TM-DSS or properly 	To minimize groundwater quality impact from contaminated area	Contractor	Excavation areas where contamination is found	Construction stage	 Water Pollution Control Ordinance TM-DSS TM-EIAO 	• Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		 If wastewater treatment is deployed, the wastewater treatment unit shall deploy suitable treatment process (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (e.g. TPH) to undetectable range. All treated effluent from wastewater treatment plant shall meet the requirements as stated in TM-DSS and should be discharged into the foul sewers. If groundwater recharging wells are deployed, recharging wells should be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells should be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in the Section 2.3 of TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater to be recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substances such as TPH products should be removed as necessary by installing the petrol 						

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		interceptor.						
\$6.9.1.6	W6	 Accidental Spillage In order to prevent accidental spillage of chemicals, the following is recommended: All the tanks, containers, storage area should be bunded and the locations should be locked as far as possible from the sensitive watercourse and stormwater drains; The Contractor should register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities should be stored with suitable labels and warnings. Disposal of chemical wastes should be conducted in the Waste Disposal (Chemical Waste) (General) Regulation. 	To minimize water quality impact from accidental spillage	Contractor	All construction site where practicable	Construction stage	 Water Pollution Control Ordinance ProPECC PN 1/94 TM-EIAO TM-DSS 	• Implemented
			Waste Manage	ement (Construction	Waste)			
S7.4.1	WM1	 On-site sorting of C&D material Geological assessment should be carried out by competent persons on site during excavation to identify materials which are not suitable to use as aggregate in structural concrete (e.g. volcanic rock, Aplite dyke rock, etc.). Volcanic rock and Aplite 	Separation of unsuitable rock from ending up at concrete batching plants and be turned into concrete for	Contractor	All construction sites	Construction stage	• DEVB (W) No. 6/2010	Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		dyke rock should be separated at the source sites as far as practicable and stored at designated stockpile area preventing them from delivering to crushing facilities. The crushing plant operator should also be reminded to set up measures to prevent unsuitable rock from ending up at concrete batching plants and be turned into concrete for structural use. Details regarding control measures at source site and crushing facilities should be submitted by the Contractor for the Engineer to review and agree. In addition, site records should also be kept for the types of rock materials excavated and the traceability of delivery will be ensured with the implementation of Trip Ticket System and enforced by site supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for tracking of the correct delivery to the rock crushing facilities for processing into aggregates. Alternative disposal option for the reuse of volcanic rock and Aplite Dyke rock, etc. should be explored.	structural use					
S7.5.1	WM2	 Construction and Demolition Material Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Adopt 'selective demolition' technique to demolish the existing structures and facilities with a view to 	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the	Contractor	All construction sites	Construction stage	 Land (Miscellaneo us Provisions) Ordinance Waste Disposal Ordinance ETWB TCW No. 19/2005 	Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		 recovering broken concrete effectively for recycling purpose, where possible; Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; and Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction. 	amount for final disposal					
S7.5.1	WM3	 <u>C&D Waste</u> Standard formwork or pre-fabrication should be used as far as practicable in order to minimize the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage; The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed 	generation and recycle the C&D materials as far as practicable so as to reduce the amount for final	Contractor	All construction sites	Construction stage	 Land (Miscellaneo us Provisions) Ordinance Waste Disposal Ordinance ETWB TCW No. 19/2005 	• Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage.						
S7.5.1	WM5	 Land-based Sediment All construction plant and equipment shall be designed and maintained to minimize the risk of silt, sediments, contaminants or other pollutants being released into the water column or deposited in the locations other than designated location; All vessels shall be sized such that adequate draft is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; Before moving the vessels which are used for transporting dredged material, excess material shall be cleaned from the decks and exposed fittings of vessels and the sea except at the approved locations; Adequate freeboard shall be maintained on barges to ensure that decks are not washed by wave action. The Contractors shall monitor all vessels transporting material to ensure that no dumping outside the approved location takes place. The Contractor shall keep and produce logs and other records to demonstrate compliance and that journeys are consistent with designated locations 	To control pollution due to marine sediment	Contractor	Along CKR alignment	Construction stage	• ETWB TCW No. 34/2002	• Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		 and copies of such records shall be submitted to the engineers; The Contractors shall comply with the conditions in the dumping licence. All bottom dumping vessels (Hopper barges) shall be fitted with tight fittings seals to their bottom openings to prevent leakage of material; The material shall be placed into the disposal pit by bottom dumping; Contaminated marine mud shall be transported by spit barge of not less than 750m3 capacity and capable of rapid opening and discharge at the disposal site; Discharge shall be undertaken rapidly and the hoppers shall be closed immediately. Material adhering to the sides of the hopper shall not be washed out of the hopper and the hopper shall remain closed until the barge returns to the disposal site. For Type 3 special disposal treatment, sealing of contaminant with geosynthetic containment before dropping designated mud pit would be a possible arrangement. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping at the disposal site, thereby fulfilling the requirements for fully confined mud disposal. 						

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
\$7.5.1	WM6	 Chemical Waste Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes; Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed, have a capacity of less than 450 L unless the specification has been approved by EPD, and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation; The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste, enclosed on at least 3 sides, have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20% of the total volume of waste stored in that area, whichever is the greatest, have adequate ventilation, covered to prevent rainfall entering, and arranged so that incompatible materials are adequately separated; Disposal of chemical waste should be via a licensed waste collector, be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which also offers a chemical 	Control the chemical waste and ensure proper storage, handling and disposal	Contractor	All construction sites	Construction stage	 Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Waste 	 Implemented, deficiency rectified after observation.

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		waste collection service and can supply the necessary storage containers, or be to a reuser of the waste, under approval from EPD.						
\$7.5.1	WM7	 General Refuse General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes; A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminum cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible; Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered by the Contractor. 	Minimize production of the general refuse and avoid odour, pest and litter impacts	Contractor	All construction sites	Construction stage	• Waste Disposal Ordinance	• Implemented
	-		Land Contamin	ation				
S8.9 & Appendix 8.4	LC2	 Excavation of the Contaminated Soil Prior to commencement of the excavation works at the contamination zone, the zone should be clearly marked out on site and the surface levels recorded. Excavation of contaminated material should be undertaken using dedicated earth-moving plant. 	The contaminated soil will be excavated for on-site reuse	Contractor	PBH4	Prior to commencement of construction works within the contaminated area	 Practice Guide (PG) for Investigation and Remediation 	Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
S8.9 & Appendix 8.4	LC3	 The excavated contaminated soils would be stockpiled at designated area on site and covered by sheet to prevent dispersion of contamination during stockpiling. The Contractor should pay attention to the selection of suitable groundwater lowering schemes and discharge points if the groundwater table is higher than the contaminated soils during excavation. The Contractor should also obtain a valid Water Pollution Control Ordinance (WPCO) discharge licence from EPD where applicable. Following completion of the excavation to the specified depth, at least one sample from the base of the excavation and four samples evenly distributed along the boundary of the excavation shall be taken for a closure assessment testing. The acceptance criterion is shown below: Locations Testing Acceptance Criteria PBH4 PCBs RBRGs (Public Park) If the results of analysis below the RBRGs (Public Park), no further excavation will be required. If the analysis indicates presence of contamination (i.e. noncompliance of the acceptance criteria), further excavation shall be carried out in 0.5m increment vertically and/or horizontally depending on 					of Contaminate d Land • Guidance Notes for Contaminate d Land Assessment and Remediation • Guidance Manual for Use of Risk-Based Remediation Goals (RBRGs) for Contaminate d Land Management	• Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		the location(s) of the sample(s) which has exceeded the acceptance criteria. Further sampling shall also be conducted for compliance testing. The process of excavation, sampling and compliance testing should continue until all contaminated materials are removed and should be supervised by a Land Contamination Specialist.						
Appendix 8.4	LC4	A Remediation Report (RR) to demonstrate adequate clean-up shall be prepared and submitted to EPD for endorsement prior to the commencement of any construction/development works within the sites. No construction/development works shall be carried out prior to the endorsement of the RR by EPD.						Implemented
				Hazard to Life		·	·	
S9.18	H1	Blasting activities regarding transport and use of explosives should be supervised and audited by competent site staff to ensure full compliance with the blasting permit conditions.	To ensure that the risks from the proposed explosives handling and transport would be acceptable	Contractor	Works areas at which explosives would be used	Construction stage	 Dangerous Goods Ordinance 	• N/A
S9.6, para.4	H2	Detonators shall not be transported in the same vehicle with other Category 1 Dangerous Goods.	To reduce the risk of explosion during the transport of cartridged emulsion	Contractor	-	Construction stage	 Dangerous Goods Ordinance 	• N/A

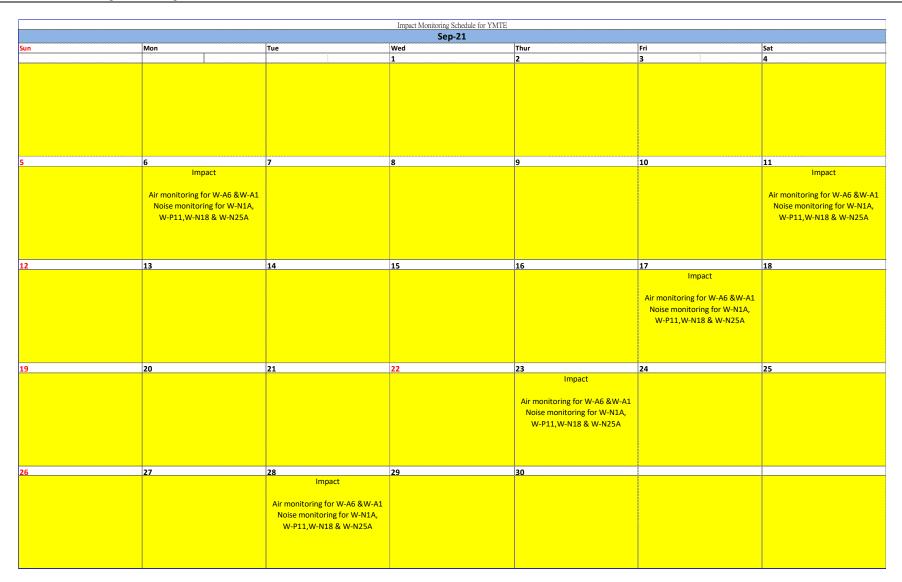
EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
S9.6, para.8	H3	The explosives delivery trucks should be approved by Mines Division and should meet the regulatory requirements for transport of explosives.	To comply with the requirements for approval of an explosives delivery vehicle	Contractor	-	Construction stage	Dangerous Goods Ordinance	• N/A
S9.10, para.7 and S9.18	H4	Blast cover should be provided for shaft at HMT, and kept closed during blasting. Provision of blast doors or heavy duty blast curtains should be implemented at the shaft to prevent flyrock and control the air overpressure.	To ensure safe use of explosives	Contractor	Shaft	Construction stage	-	• N/A
S9.16	H5	Only the required quantity of explosives for a particular blast should be transported to avoid the return.	To reduce risks during explosives transport	Contractor	Works areas at which explosives would be used	Construction stage	-	• N/A
\$9.18 	H7	The approved truck dedicated for transport of explosives should comply with the "Guidance Note on Requirements for Approval of an Explosives Delivery Vehicle" issued by CEDD Mines Division. The truck should be periodically inspected and properly maintained in good operation conditions. The fuel carried in the fuel tank should be minimized to reduce the duration of fire. Adequate fire fighting equipment shall be provided, inspected and replaced periodically (e.g. fire extinguishers).	To reduce the risk during explosives transport	Contractor	Works areas of which explosives would be used	Construction stage	Dangerous Goods Ordinance	• N/A

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
\$9.18	Н8	The driver and his assistant should be physically healthy, experienced and have good safe driving records. The driver should hold a proper driving licence for the approved transport truck. Dedicated training programme and regular road safety briefing sessions/ workshops should be provided to enhance their safe driving attitude and practice. Smoking should be strictly prohibited.	To reduce the risk during explosives transport	Contractor	Works areas at which explosives would be used	Construction stage	-	• N/A
\$9.18	H9	Emergency response plans in case of road accident should be prepared and implemented. The driver and his assistant should be familiar with the emergency procedures including evacuation, and proper communication/ fire-fighting equipment should be provided to the driver and his assistant.	To reduce the risk during explosives transport	Contractor	Works areas at which explosives would be used	Construction stage	-	• N/A
\$9.18	H10	Close liaison and communication among Mines Division, Contractors for transport of explosives, and working staff of the blasting should be established. In case of any change of work schedule leading to cancellation or variation of explosives required, relevant parties should be informed in time to avoid unused explosives at the work sites.	To reduce the risk during explosives transport	Contractor	Works areas at which explosives would be used	Construction stage	-	• N/A
S9.18	H11	Close liaison and communication with Fire Services Department should be established to reduce the accidental detonation escalated from a fire. The contractors for transport of explosives should use the preferred transport routes as far as practicable.	To reduce the risk during explosives transport	Contractor	Works areas at which explosives would be used	Construction stage	-	• N/A
S9.18	H12	Contingency plan should be prepared for transport of explosives under severe weather conditions such as rainstorms and thunderstorms.	To reduce the risk during explosives transport	Contractor	Works areas at which explosives would be	Construction stage	-	• N/A

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
					used			
S9.18	H13	For explosive transport, all packages of explosives on the truck should be properly stored in the truck compartment as required. Packaging of the explosives should remain intact (i.e. damage free) until they are transferred to the blasting site.	To reduce the risk during explosives transport	Contractor	Works areas at which explosives would be used	Construction stage	-	• N/A
S9.18	H14	Availability of a parking space should be ensured before commencement of transport of explosives. Location for loading and unloading of explosives should be as close as possible to the shaft. No hot work should be performed in the vicinity during the time of loading and unloading.	To reduce the risk during explosives transport	Contractor	Works areas at which explosives would be used	Construction stage	-	• N/A
S9.18	H22	It is recommended to explore to minimize the use of the cartridged emulsion explosives and maximize the use of bulk emulsion explosive as far as practicable.	To reduce the risk during explosives transport	Contractor	Works areas at which explosives would be used	Construction stage	-	• N/A
S9.18	H24	It is recommended to explore to use smaller explosive charges such as 'cast boosters' or 'mini-cast booster' instead of cartridged emulsion as primers for bulk emulsion. This option reduces the quantity of explosives required for transportation for the sections where bulk emulsion will be used.	To reduce the risk during explosives transport	Contractor	Works areas at which explosives would be used	Construction stage	-	• N/A
		explosives required for transportation for the sections		dscape & Visual				

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
S10.10.1 Table 10.11	LV3	 <u>Good Site Management</u> Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance. Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance. 	Minimize visual impact	Contractor	Within Project site	Construction stage	-	Implemented
S10.10.1 Table 10.11	LV4	 <u>Screen Hoarding</u> Decorative screen hoarding should be erected to screen the public from the construction area. It should be designed to be compatible with the existing urban context. 	Minimize visual impact	Contractor	Within Project site	Construction stage	-	Implemented
\$10.10.1 Table 10.11	LV5	 Lighting Control during Construction All lighting in the construction site shall be carefully controlled to minimize light pollution and night-time glare to nearby residencies and GIC. The Contractor shall consider other security measures, which shall minimize the visual impacts. 	Minimize visual impact	Contractor	Within Project site	Construction stage	-	• N/A
S10.10.1 Table 10.11	LV6	 <u>Erosion Control</u> The potential for soil erosion shall be reduced by minimizing the extent of vegetation disturbance on site and by providing a protective cover over newly exposed soil. 	Minimize landscape impact	Contractor	Within Project site	Construction stage	-	• N/A
S10.10.1 Table 10.11	LV7	 <u>Tree Protection & Preservation</u> Carefully protected during construction. Tree protection measures will be detailed at the Tree Removal Application stage and plans submitted to the relevant Government Department for approval 	Minimize landscape and visual impact	Contractor	Within Project site	Construction stage	 'Guidelines for Tree Risk Management and Assessment 	Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		in due course in accordance with ETWB TC no. 3/2006.					Arrangement on an Area Basis and on a Tree Basis', Greening, Landscape and Tree Management (GLTM) Section, DEVB • Latest recommende d horticultural practices from GLTM Section, DEVB	
S10.10.1 Table 10.11	LV8	 Tree Transplantation For trees unavoidably affected by the Project that have to be removed, where practical transplantation will be chosen as the top priority method of removal. If this is not possible or practical compensatory planting will be provided for trees unavoidably felled (See LV10). For trees unavoidably affected by the Project works that are transplanted, transplantation must be carried out in accordance with ETWB TCW 2/2004 and 3/2006. 	Minimize landscape and visual impact	Contractor	Within Project site and designated off-site locations	Prior to Construction stage	 ETWB TCW 3/2006 Latest recommende d horticultural practices from Greening, Landscape and Tree 	• N/A


EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
							Management (GLTM) Section, DEVB • ETWB TCW 2/2004	
S10.10.1 Table 10.11	LV9	 <u>Compensatory Planting</u> For trees unavoidably affected by the Project that have to be removed, where practical transportation will be chosen as the top priority method of removal but if this is not possible or practical compensatory planting will be provided for trees unavoidably felled. All felled trees shall be compensated for by planting trees to the satisfaction of relevant Government projects. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006. Compensatory tree planting may be incorporated into public open spaces and along roadside amenity areas affected by the construction works and therefore be part of the bigger wider planting plans. Onsite compensation planting is preferred but if necessary, additional receptor sites outside the Works Area shall be agreed separately with Government during the Tree Felling Application process. 	Minimize visual impact and also enhance landscape	Contractor	Within Project site	Construction stage	 ETWB TCW 3/2006 Latest recommende d horticultural practices from Greening, Landscape and Tree Management (GLTM) Section, DEVB ETWB TCW 2/2004 	• N/A
			Cultural Heritage	Impact (Construct	ion Phase)			

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
S11.4.4	CH1	The contractor should be alerted during the construction on the possibility of locating archaeological remains and as a precautionary measure, AMO shall be informed immediately in case of discovery of antiquities or supposed antiquities in the subject sites.	To preserve any cultural heritage items which may be removed and damaged by the excavation	Contractor	During construction works for cut and cover tunnels	Construction stage	AMOs requirements	Implemented
\$12.6.1	СНЗ	 Protective covering should be provided for the buildings in the form of plastic sheeting; Buffer zones should be provided between the construction works and the external walls of the buildings and should be as large as site restrictions allow and be marked out by temporary fencing or hoarding; An underpinning scheme is required to transfer the existing column loadings to a deeper rock stratum. The supporting system includes cutting the existing ground floor slab to expose the existing pile caps and then construct transfer beams at both sides of the pile caps. The transfer beams will tie up with the existing caps. Loadings of the transfer beams will be transferred to the rock socket piles installed at the two ends of the beams; The AAA settlement and tilting limit should be 6/8/10 mm and1/2000, 1/1500 and 1/1000; Monitoring of vibration levels will be undertaken during the construction phase and the Alert, Alarm and Action (AAA) vibration limit will be set at 5/6/7.5 mm/s. The monitoring proposal should be sent to AMO for comment;. 	Protect the building from damage from construction works	Contractor	Yau Ma Tei Police Station (Old Wing) (CKR-01)	Prior to commencement of and during the construction phase	 Guidelines for Cultural Heritage Impact Assessment EIAO-TM Annex 10 and Annex 19 AMO Proposed Vibration Limits 	• Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
		 Regular site inspections and monitoring works will be carried out by the contractor and the monitoring results will be submitted to the resident site staff of HyD to ensure compliance. 						
S12.6.1		 Adopting diaphragm wall construction method; Grout curtain should be provided in front of the building; Recharging system should be installed as a contingency measure to mitigate the fluctuation of water table; the AAA settlement and tilting limit should be 6/8/10 mm and 1/2000, 1/1500 and 1/1000; Monitoring of vibration levels will be undertaken during the construction phase and the Alert, Alarm and Action (AAA) vibration limit will be set at 5/6/7.5 mm/s. The monitoring proposal should be sent to AMO for comment;. Regular site inspections and monitoring works will be carried out by the contractor and the monitoring results will be submitted to the resident site staff of HyD to ensure compliance. 	Protect the building from damage from construction works	Contractor	Yau Ma Tei Police Station (Old Wing) (CKR-01)	Prior to commencement of and during the construction phase	 Guidelines for Cultural Heritage Impact Assessment EIAO-TM Annex 10 and Annex 19 AMO Proposed Vibration Limits 	• Implemented
S12.6.1 Table 12.2		 The Alert, Alarm and Action (AAA) vibration limit will be set at 3/4/5 mm/s and a condition survey shall be carried out by the project proponent prior to the construction phase to confirm this assessment Vibration monitoring of the structure shall be employed during the construction phase to ensure that the level is not exceeded. The monitoring proposal should be sent to AMO for comment. 	Protect the building from damage from construction works	Contractor	Tin Hau Temple (CKR-02)	Prior to commencement of and during the construction phase	 Guidelines for Cultural Heritage Impact Assessment EIAO-TM Annex 10 and Annex 19 AMO 	• Implemented

EIA Ref.	EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommende d Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and/ or standards to be achieved	Implementation Status
							Proposed Vibration Limits	
				EM&A Project				
S13.2	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual	Control EM&A Performance	Highways Department	All construction sites	Construction stage	EIAO Guidance Note No. 4/2010 • TM-EIAO	Implemented
S13.2-13.4	EM2	 An Environmental Team needs to be employed as per the EM&A Manual; Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures; An environmental impact monitoring needs to be implemented by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 	Perform environmental monitoring & auditing	Highways Department/ Contractor	All construction sites	Construction stage	 EIAO Guidance Note No. 4/2010 TM-EIAO 	Implemented

Appendix G Monitoring Schedule of the Reporting Month

Appendix H Calibration Certificates (Air Monitoring)

Website: www.oouityhk.com

C. 11/F. Ford Glory Plaza, . 37-39 Wing Hong Street, ung Sha Won, Kowloon 10

Tel. : (852) 2698 5855 Fox.: (652) 2698 9583 L

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:	27-Jun-21	to	1-Jul-21
Next Verification Test Date:	1-Jul-22		
Unit-under-Test- Model No.	Sibata LD-5R		
Unit-under-Test Serial No.	761174		
Our Report Refrence No.	RPT-21-HVS-00)04	

Standard Equipment Information			
Verification Equipment Type		Tisch's TSP HVS	Tish HVS Calibrator
Standard Equipment Model No.		TE-5170X	TE-5028
Equipment serial no.	MFC	1049	1050
Last Calibration Date		17-Jun-21	24-Sep-20
Next Calibration Date		17-Aug-21	24-Sep-21

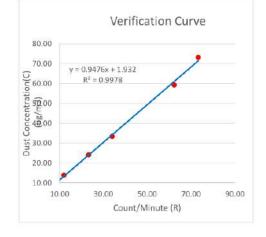
Verification	Date	Time		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)	
Test No.		Start-time	Elapsed End-time Time K-Factor (K=C/R) (in min)		x-axis	(TC)	ID No.	y axis	
1	27/6/2021	1254.37	1257.37	180.00	0.00098	34.00	6120	R210872/1	33.33
2	27/6/2021	1258.44	1261.44	180.00	0.00095	62.33	11220	R210872/2	59.26
3	27/6/2021	1262.31	1265.31	180.00	0.00122	8.00	1440	R210872/3	9.72
4	1/7/2021	1265.84	1268.84	180.00	0.00100	73.33	13200	R210887/1	73.15
5	1/7/2021	1269.10	1272.10	180.00	0.00116	12.00	2160	R210887/2	13.89
6	1/7/2021	1272.50	1275.50	180.00	0.00103	23.33	4200	R210887/3	24.07
					0.00106				

1.1

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

By Linear Regression of y on x: slope, mh= 0.9476 intercept,ch= 1.9320

*Correlation Coefficient,R= 0.9989


Verification Test Result: Strong Correlation, Results were accepted. * If the Correlation Coefficient, R is <0.5. Checking and

Re-verification are required.

Verified By:

Technical Manager

Date: 20-07-2021

Nebsite: www.acuityhk.com

Unit C, 11/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheeng Sha Wan, Kowleon.

Fel. : (852) 2598 5555 Fox.: (852) 2598 9583

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:	27-Jun-21	to	1-Jul-21
Next Verification Test Date:	1-Jul-22		
Unit-under-Test- Model No.	Sibata LD-5R		
Unit-under-Test Serial No.	761173		
Our Report Refrence No.	RPT-21-HVS-00	03	

Standard Equipment Information			
Verification Equipment Type		Tisch's TSP HVS	Tish HVS Calibrator
Standard Equipment Model No.		TE-5170X	TE-5028
Equipment serial no.	MFC	1049	1050
Last Calibration Date		17-Jun-21	24-Sep-20
Next Calibration Date		17-Aug-21	24-Sep-21

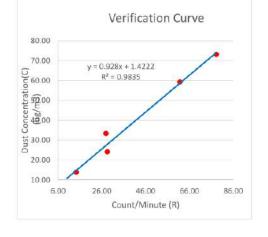
Verification	Date		Time Start-time End-time (in min)		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time			Time K-Factor (K=C/R)		(TC)	ID No.	y axis
1	27/6/2021	1254.37	1257.37	180.00	0.00119	27.90	2652	R210872/1	33.33
2	27/6/2021	1258.44	1261.44	180.00	0.00096	61.70	1539	R210872/2	59.26
3	27/6/2021	1262.31	1265.31	180.00	0.00097	10.00	1983	R210872/3	9.72
4	1/7/2021	1265.84	1268.84	180.00	0.00093	78.30	2313	R210887/1	73.15
5	1/7/2021	1269.10	1272.10	180.00	0.00096	14.40	1407	R210887/2	13.89
6	1/7/2021	1272.50	1275.50	180.00	0.00084	28.50	1299	R210887/3	24.07
	11. 11. 11. 11.				0.00098				

1.0

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

By Linear Regression of y on x: slope, mh= 0.9280 intercept,ch= 1.4222

*Correlation Coefficient,R= 0.9917


Verification Test Result: <u>Strong Correlation, Results were accepted.</u> * If the Correlation Coefficient, R is <0.5. Checking and

Re-verification are required.

Verified By:

Date: 20-07-2021

Technical Manager

							LIBRATIC	
						MUg	ust 3, 2022	
	c	alibration C	Certificatio	on Inform	ation Ta:	295	*К	
	TE-5028A	Calib	orator S/N:	3702	Pa:	750.57	mm Hg	
	Vol Init	Vol Elnol	61/01	ATimo	AD	AU]	
Pun					100	100 million (100 million)	1	
		and the second se				the second s		
				1.0100-0.055		and the second se		
the second s					and the second se			
5	9	10	1	0.6540	16.2	6.00		
		C	ata Tabulat	Tabulation				
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(Tstd) Ta)		Qa	√∆н(та/Ра)		
(m3)	(x-axis)	(y-axi	is)	Va	(x-axis)	(y-axis)		
0.9922	0.7534	1.223	33	0.9945	0.7552	0.7678	1	
0.9887	0.9553	1.579)3	0.9911	0.9576	0.9913	1	
0.9870	1.0478	1.730	00	0.9893	1.0503	1.0859]	
		and the second se		0.9876				
0.9761		and the second s		0.9784		the second		
OCTO				0.0	()			
USID	p= r=			UA	0= r=	0.99975		
				(2.0)				
A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OF THE OWNER OWNE	Contraction of the local division of the loc	/Pstd)(Tstd/Ta	1)			P)/Pa)		
Qstd=	Vstd/∆Time	For subsour	ent flow rat					
Qstd=	1/m ((_ _ AH (the second se	н(та/Ра))-b)		
		-510 / 18 /	//		(()	, ,,,,		
298.15	°K				RECA	LIBRATION		
		1			mmanda	anual recalibration	an nor 1000	
		. 1120)						
		Hg)						
				Lite	Annoahus	haße	~ 1	
	August 3, 2 Jim Tisch Model #: Run 1 2 3 4 5 Vstd (m3) 0.9922 0.9887 0.9870 0.9853 0.9761 QSTD QSTD Qstd= Qstd= Standard 298.15 760 Kor manomet ter manomet	Onment Conversion of the second standard Conditions 298.15 % Vote the persture ("K) Vote the second standard conditions 298.15 % 760 men the second standard standard standard for the second standard stan	Calibration CCalibration CAugust 3, 2021RootseJim TischModel #:TE-5028ACalibration CModel #:TE-5028ACalibration CMin (m3)TVstdQstdQ/AH(PaModel #:TE-5028ACalibration CVstdQstdV/AH(PaModel #:TE-5028ACalibration CVstdQstdV/AH(PaModel #:TE-5028ACalibration CO.9922O.7534 <th cols<="" td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th>	<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Fisch Environmental, Inc. 145 South Miami Avenue village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009

				DATA SHEE	- ()
		Site	Information	1	
Location:	YMT Catholic Primary School	Site ID:	₩-A1 TE-5170X	Date: Operator:	6-Sep-2021 Tim
Serial No:	1084	Model:	1E-3170X	operator.	11Ш
		Ambie	nt Conditio		
Corrected Pr	essure (mm Hg):	757.9	Temperature	(deg K):	302.7
		Calibr	ation Orifi	ce	
Model:		Т	E-5028A	Slope:	1.03041
Serial No.:			3702	Intercept:	-0.00231
Calibration 3	Due Date:	3	-Aug-22	Corr. Coeff:	0.99975
		0.1:1	netion Det	_	
Plate or	In,H2O		oration Data , X-Axis	I, CFM	IC, Y-Axis
Test #	(in)		, <u>A-nais</u> n3/min)	(chart)	(corrected)
1	1.35		1.120	39.6	39.24
2	2.33		1.470	40.4	40.03
3	3.11		1.698	40.9	40.53
4	3.90		1.901	41.4	41.02
5	3.87		1.894	41.4	41.02
Sampler Calibta	tion Relationship (Qa on x-axis	. IC on v-ax	is)		
- m=	2.2886	b=	36.6670	_	Corr. Coeff= 0.9997
Sam	pler set point(SSP)	40	CFM		
		Ca	lculations		
Qstd = 1/m[Sqrt	(H2O(Pa/Pstd)(Tstd/Ta))-b]		m = sampler sl	ope	
IC = I[Sqrt(Pa/Pa)]	std)(Tstd/Ta)]		b = sampler int	ercept	
			I = chart respon	nse	
Qstd = standard	flow rate		Tav = average te	emperature	
IC = corrected cl	-		Pav = average p	ressure	
I = actual chart r					
m = calibrator Q	- I				
b = calibrator Q					
-	perature during calibration (deg				
-	sure during calibration (mm Hg)				
Tstd = 298 deg H					
Pstd = 760 mm I	0				
	calculation of sampler flow:				
-	rt(298/Tav)(Pav/760)]				
-	t(298/Tav)(Pav/760)] Tim				

	HIVOL SAMPLER				I (ISP)	
		Site	Information	1		
Location:	YMT Catholic Primary School	Site ID:	₩- A1	Date:	23-Sep	-2021
Serial No:	1084	Model:	TE-5170X	Operator:	Ti	m
		Ambie	ent Condition	n		
Corrected Pr	essure (mm Hg):	759.8	Temperature (301	.0
		Calib	ration Orifi	ce	•	
Model:		r	re-5028A	Slope:	1.030)41
Serial No.:			3702	Intercept:	-0.00	
Calibration	Due Date:	:	3-Aug-22	Corr. Coeff:	0.99	975
51	T 1700	1	bration Data	1		
Plate or	In,H20		a, X-Axis	I, CFM		-Axis
Test #	(in) 1.21	- (<u>m3/min)</u> 1.064	(chart) 39.1	(corre 38.9	
2	2.53		1.538	40.7	40.4	
3	3.33		1.764	41.5	40.	
4	3.74		1.869	41.8	41.29	
5	4.41		2.030	42.3	42.08	
Sampler Calibta m=	tion Relationship (Qa on x-axis 3.3191	s, IC on y-a b=	xis) 35.3825	_	Corr. Coeff=	0.9997
Sam	npler set point(SSP)	40	CFM	_		
IC = I[Sqrt(Pa/F Qstd = standard IC = corrected c I = actual chart r m = calibrator (b = calibrator (Ta = actual temp Pa = actual pres Tstd = 298 deg Pstd = 760 mm For subsequent of	flow rate hart response response 2std slope 2std intercept perature during calibration (deg sure during calibration (mm Hg) K	К)	alculations m = sampler slo b = sampler into I = chart respon Tav = average te Pav = average pr	ercept ise mperature		
	Tim					

	HIVOL SAMPLER	CALIBR	ATION D	ATA SHEET	(TSP)
		Site I	nformation		
Location:	Man Cheong Building	Site ID:	₩- A6	Date:	06-Sep-2021
Serial No:	1050	Model:	TE-5170X	Operator:	Tim
		Ambien	t Condition		
Corrected Pres	sure (mm Hg):	757.9	Temperature	(deg K):	302.7
		Calibra	tion Orifice	e	
Model:		Т	E-5028A	Slope:	1.03041
Serial No.:			3702	Intercept:	-0.00231
Calibration Du	e Date:	3	-Aug-22	Corr. Coeff:	0.99975
		Calibr	ation Data		
Plate or	In,H2O		, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	-	n3/min)	(chart)	(corrected)
1	1.11		1.015	39.9	39.53
2	1.22		1.064	40.0	39.63
3	2.26		1.448	40.8	40.43
4	3.32		1.754 1.964	41.4 41.9	41.02 41.52
Sampler Calibtatio	n Relationship (Qa on x-axis, IC	c on y-axis)		•	•
m=	2.0662	b=	37.4319	_	Corr. Coeff= 0.9997
Sam	pler set point(SSP)	40	CFM	_	
Qstd = 1/m[Sqrt(H2 IC = I[Sqrt(Pa/Pstd Qstd = standard flo IC = corrected char I = actual chart resp	w rate t response	Calo	m = sampler slo b = sampler int I = chart respon Tav = average te Pav = average pr	ercept nse emperature	
Pa = actual pressure Tstd = 298 deg K Pstd = 760 mm Hg	l intercept ature during calibration (deg K) e during calibration (mm Hg) culation of sampler flow:				
(1.21 11+0)/[341(2	(1 av/ 100)]				

					Г (TSP)
		Site	Information	n	
Location:	Man Cheong Building	Site ID:	₩-А6	Date:	23-Sep-2021
Serial No:	1050	Model:	TE-5170X	Operator:	Tim
		Ambie	ent Conditio	on	
Corrected Pre	essure (mm Hg):	759.8	Temperature	(deg K):	301.0
		Calibi	ration Orifi	се	
Model:			E-5028A	Slope:	1.03041
Serial No.:			3702	Intercept:	-0.00231
Calibration I	Due Date:	3	3-Aug-22	Corr. Coeff:	0.99975
					1
	T 1700		bration Dat		
Plate or	In,H20	-	a, X-Axis	I, CFM	IC, Y-Axis
Test #	(in) 1.13	(<u>m3/min)</u> 1.029	(chart) 38.4	(corrected) 38.20
2	2.15		1.418	39.3	39.10
3	2.64		1.571	39.7	39.50
<u> </u>	2.64 3.18		1.571 1.724	39.7 40.1	39.50 39.89
-					
4 5 Sampler Calibtat m=	3.18 4.31 tion Relationship (Qa on x-axi 2.4516	b=	1.724 2.007 xis) 35.6576	40.1	39.89
4 5 Sampler Calibtat m=	3.18 4.31 tion Relationship (Qa on x-axi	b= 39	1.724 2.007 xis) 35.6576 CFM	40.1	39.89 40.59
4 5 Sampler Calibtat m= Sam Qstd = 1/m[Sqrt(IC = I[Sqrt(Pa/Ps Qstd = standard f IC = corrected ch	3.18 4.31 tion Relationship (Qa on x-axi 2.4516 pler set point(SSP) (H2O(Pa/Pstd)(Tstd/Ta))-b] std)(Tstd/Ta)] flow rate hart response	b= 39	1.724 2.007 xis) 35.6576	40.1 40.8	39.89 40.59
4 5 Sampler Calibtat m= Sam Qstd = 1/m[Sqrt(IC = I[Sqrt(Pa/Ps Qstd = standard f IC = corrected ch I = actual chart n m = calibrator Q b = calibrator Q Ta = actual temp	3.18 4.31 tion Relationship (Qa on x-axi 2.4516 pler set point(SSP) (H2O(Pa/Pstd)(Tstd/Ta))-b] std)(Tstd/Ta)] flow rate hart response esponse 2std slope	b= 39 Ca	1.724 2.007 xis) 35.6576 CFM alculations m = sampler sl b = sampler in I = chart respo Tav = average to	40.1 40.8	39.89 40.59
4 5 Sampler Calibtat m= Sam Qstd = 1/m[Sqrt(IC = I[Sqrt(Pa/Ps Qstd = standard f IC = corrected ch I = actual chart n m = calibrator Q b = calibrator Q b = calibrator Q Ta = actual temp Pa = actual press Tstd = 298 deg k Pstd = 760 mm F For subsequent c	3.18 4.31 tion Relationship (Qa on x-axi 2.4516 pler set point(SSP) (H2O(Pa/Pstd)(Tstd/Ta))-b] std)(Tstd/Ta)] flow rate hart response esponse 2std slope std intercept serature during calibration (deg sure during calibration (mm Hg X	b= 39 Ca	1.724 2.007 xis) 35.6576 CFM alculations m = sampler sl b = sampler in I = chart respo Tav = average to	40.1 40.8	39.89 40.59
4 5 Sampler Calibtat m= Sam Qstd = 1/m[Sqrt(IC = I[Sqrt(Pa/Ps Qstd = standard f IC = corrected ch I = actual chart n m = calibrator Q b = calibrator Q b = calibrator Q Ta = actual temp Pa = actual press Tstd = 298 deg k Pstd = 760 mm F For subsequent c	3.18 4.31 tion Relationship (Qa on x-axi 2.4516 pler set point(SSP) (H2O(Pa/Pstd)(Tstd/Ta))-b] std)(Tstd/Ta)] flow rate hart response esponse systd slope std intercept serature during calibration (deg sure during calibration (mm Hg X Hg calculation of sampler flow:	b= 39 Ca	1.724 2.007 xis) 35.6576 CFM alculations m = sampler sl b = sampler in I = chart respo Tav = average to	40.1 40.8	39.89 40.59

Appendix I Calibration Certificates (Noise)

(A+A)*L Acoustics and Air Testing Laboratory Co. Ltd. 聲量】]]] 聲學及空氣測試實驗室有限公司

Certificate of Calibration

for

Description:	Sound Level Meter
Manufacturer:	NTi Audio
Type No.:	XL2 (Serial No.: A2A-13548-E0)
Microphone:	ACO 7052 (Serial No.: 73780)
Preamplifier;	NTi Audio M2211 MA220 (Serial No.: 5235)
	Submitted by:
Customer:	Acuity Sustainability Consulting Limited
Address:	Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street,
	Cheung Sha Wan, Kowloon

Upon receipt for calibration, the instrument was found to be:

\square	Within
\Box	Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 10 December 2020

Date of calibration: 12 December 2020

Calibrated by:Calibration Technician	Certified	' by:		Ng Yan Wa ory Manager
Date of issue: 12 December 2020				ary manager
		1		
Certificate No.: APJ20-144-CC001				Page 1 of 4
Room 422,Leader Industrial Centre,57-59 Au Pui Wa				
Tel: (852)20 Homepage: http://www.aa		and the second	352) 2668 6946 ry@aa-lab.com	

(A+A)*L Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:	23.7°C
Air Pressure:	1006 hPa
Relative Humidity:	61.8 %

3. Calibration Equipment:

	Туре	Serial No.	Calibration Report Number	Traceable to
Multifunction Calibrator	B&K 4226	2288467	AV200041	HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under		etting of Unit-under-test (UUT)		Арр	lied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	± 0. 4

Linearity

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.0	Ref
30-130	dBA	SPL	Fast	104	1000	104.0	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	A SPL -	Fast	94 1000	94 1000	94.0	Ref
	dDA		Slow			94.0	±0.3

Certificate No.: APJ20-144-CC001

*L)=)

Page 2 of 4

Room 422, Leader Industrial Centre, 57-59 Au Pui Wan Street, F	o Tan, Shatin, N.T., Hong Kong
Tel: (852) 2668 3423	Fax:(852) 2668 6946
Homepage: http://www.aa-lab.com	E-mail: inquiry@aa-lab.com

(A+A)*L Acoustics and Air Testing Laboratory Co. Ltd. 聲聲及空氣測試實驗室有限公司

Frequency Response

Linear Response

Setting of Unit-under-test (UUT)			App	Applied value		IEC 61672 Class						
Range, dB	Freq. We	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB					
					31.5	94.1	12.0					
					63	94.1	±1.5					
					125	94.1	±1.5					
					250	94.1	±1.4					
30-130	dB	dB SPL	Fast	94	500	94.1	±1.4					
											1000	94.0
	11 - C											
					4000	93.4	±1.6					
					8000	92.7	+2.1; -3.1					

A-weighting

Setting of Unit-under-test (UUT)			Арр	Applied value		IEC 61672 Class 1			
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB		
					31.5	54.7	-39.4±2.0		
					63	68.0	-26.2±1.5		
					125	78.0	-16.1±1.5		
					250	85.4	-8.6±1.4		
30-130	dBA	SPL	Fast	94	94	500	90.8	-3.2±1.4	
	1000 2000 4000						1000	94.0	Ref
					4000	94.4	+1.0 ±1.6		
					8000	91.6	-1.1+2.1; -3.1		

C-weighting

Setting of Unit-under-test (UUT)			Арр	Applied value		IEC 61672 Class 1							
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB						
					31.5	91.1	-3.0 ±2.0						
					63	93.3	-0.8 ± 1.5						
					125	93.9	-0.2 ± 1.5						
					250	94.1	-0.0±1.4						
30-130	dBC	11	Fast	94	94 500 94	94,1	-0.0 ± 1.4						
				(La de La Adria VIII)							1000	94.0	Ref
						2000	93.7	-0.2 ±1.6					
					4000	92.6	-0.8 ± 1.6						
					8000	89.7	-3.0 +2.1: -3.1						

Page 3 of 4

Certificate No.: APJ20-144-CC001

 Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street , Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423
 Fax:(852) 2668 6946

 Homepage: http://www.aa-lab.com
 E-mail : inquiry@aa-lab.com

(A+A)*L Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

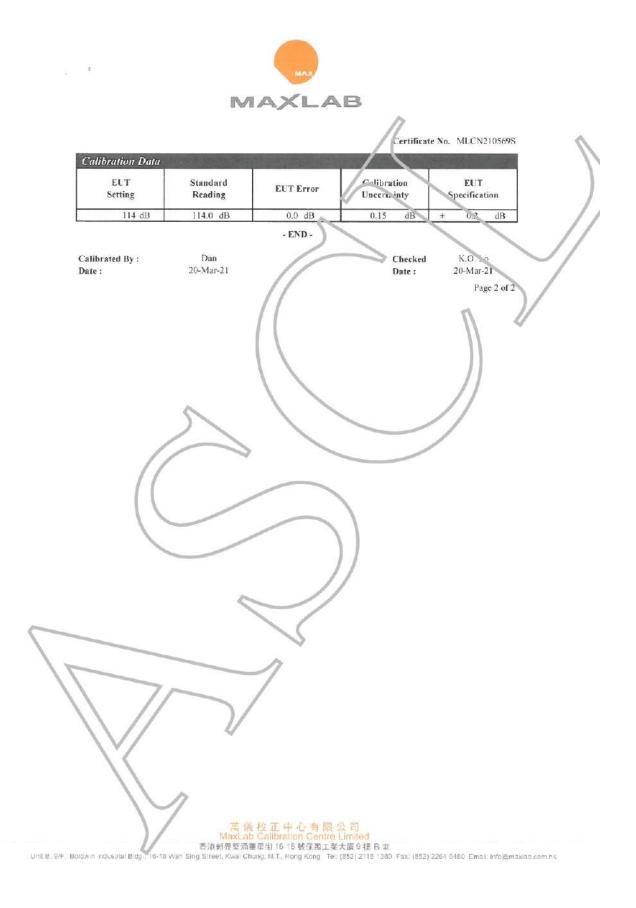
Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.15
	125 Hz	± 0.10
	250 Hz	± 0.10
	500 Hz	± 0.10
	1000 Hz	± 0.05
	2000 Hz	\pm 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	<u>+</u> 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.



Certificate No.: APJ20-144-CC001

Page 4 of 4

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatlin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946 Homepage: http://www.aa-lab.com E-mail : inquiry@aa-lab.com

The second s		N CERTIF	ICATE		
Certificate Inform	20-Mar-2021		in Maata Numt	mLCN2105698	
Customer Informa			seru cate i tumo	[Indext2/d5d93]	
Company Name Address	Acuity Sustainability Consu Unit C, 11/E., Ford Glory Pl Nos. 37-39 Wing Hing Stree Cheung Sha Wan, Kowloon,	aza, t.	>		
Equipment-under-	Test (EUT)	1			
Description Manufacturer Model Number Serial Number Equipment Number	Sound Calibrator Svantek SV 33B 83042 	<u></u>			
Calibration Partice	ular 🔪	1	and the state of		
Date of Calibration Calibration Equipmer	20-Mar-2021 at 475 (MLTE008) / AV2000 133 7(MLTE190) / MLEC20				
Calibration Procedure Calibration Condition	s Laboratory Temperatu Relative M EUT Station Warm-up T Power Sup	Time Over 3 hor Time Not applie my internal 1 a	% able attery		
Calibration Result	Calibration data w., e detaile All calibration results were v				
Approved By & Da	le 🔶	-1		South States of	
		1/4	K.O. Lo	20-Mar-2021	
not include an immee fo	ed too, the calibration are unceable a ation Certificate on a state to the y-th the EUT long term drift, variatie a wit y more and the capacity of a y other relumited share of the liable for any	es measured at the time th environmental changes r laboratory to repeat the oss or damage resulting	of the calibration and the s, vibration and shock d measurement. from the use of the EUI	uring transportation,	

Appendix J The Certification of Laboratory with HOKLAS Accredited Analytical Tests

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation 認可證書

This is to certify that 将此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可證錄委員會建議而接受的

> HOKLAS Accredited Laboratory 「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 – 《測試及校正實驗所能力的通用規定》所訂的要求。 of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試預別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognized international Standard ISO / IEC 17025 : 2006. 本實驗所乃規總公司的設置標準 ISO / IEC 17025 : 2005 連接證可。 This accreditation damonstrates technical compatence for a defined scope and the operation of a laboratory 選項證可資格派示在形定範疇所需的技術能力及實驗所質 豐厚體派的資金作 quality management system (see joint IAF+ILAC-ISO Communique), (民國際證可論權、國際實驗所證可合作編輯及讓那樣準化組織的融合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date: 5 May 2009 簽發日期:二零零九年五月五日

Registration Number: IDKLAS 066 註冊號碼:

Date of First Registration : 15 September 1995 首次註冊日期 : 一九九五年九月十五日

The certificate is assued subject to the torms and conditions and down by HKAS 本證書按照香港銀可處訂立的條款及修件發出 L 000552

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation 認可證書

This is to certify that 特此證明

ACUMEN LABORATORY AND TESTING LIMITED

浩科檢測中心有限公司

Lot 12, Tam Kon Shan Road, North Tsing Yi, New Territories, Hong Kong 香港新界青衣北担杆山路12路段

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 在認可諮詢委員會的建議下獲香港認可處執行機關接受為

> HOKLAS Accredited Laboratory 「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO/IEC 17025:2005 and it has been accredited for performing specific tests or calibrations as listed in the scope of accreditation within the test category of

Environmental Testing

此實驗所符合ISO/IEC 17025:2005所訂的要求 並獲認可進行載於認可範圍內下述測試類別中的指定測試或校正工作

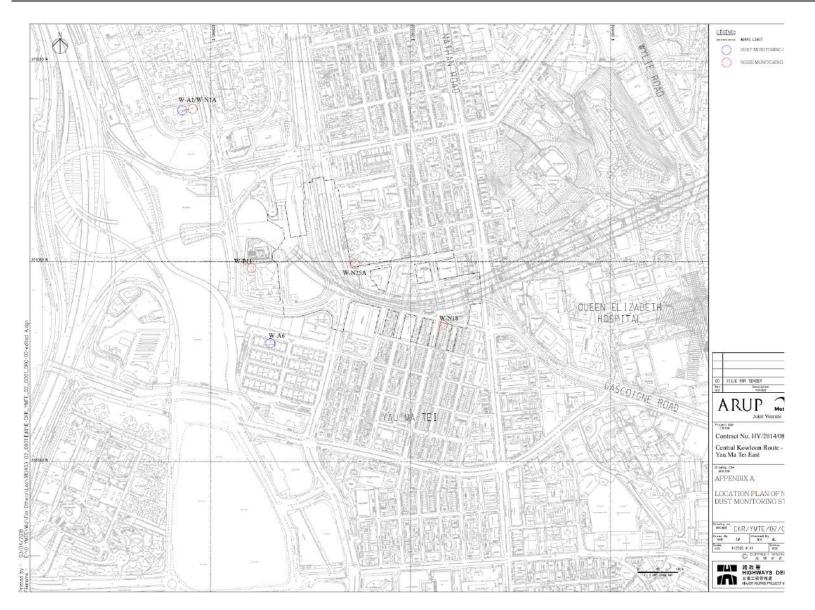
環境測試

This accreditation to ISO/IEC 17025:2005 demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (see joint IAF-ILAC-ISO Communiqué). 此項 ISO/IEC 17025:2005 的認可資格證明此實驗所具備指定範疇內所須的技術能力並 實施一套實驗所質量管理體系(見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 現經香港認可處執行機關授權在此蓋上香港認可處的印章

WONG Wang-win, Executive Administrator 執行幹事 黃宏華 Issue Date : 16 July 2014 簽發日期 : 二零一四年七月十六日

Registration Number : HOKLAS 241 註冊號碼 :

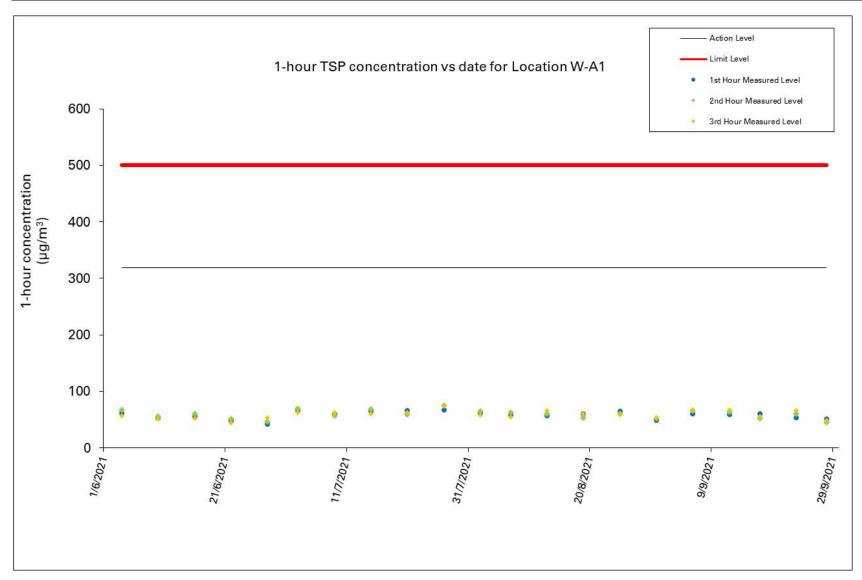

This certificate is issued subject to the terms and conditions laid down by HKAS 李證言按照香港跟可處訂立的條款及條件登出

Date of First Registration : 16 July 2014 首次註冊日期:二零一四年七月十六日

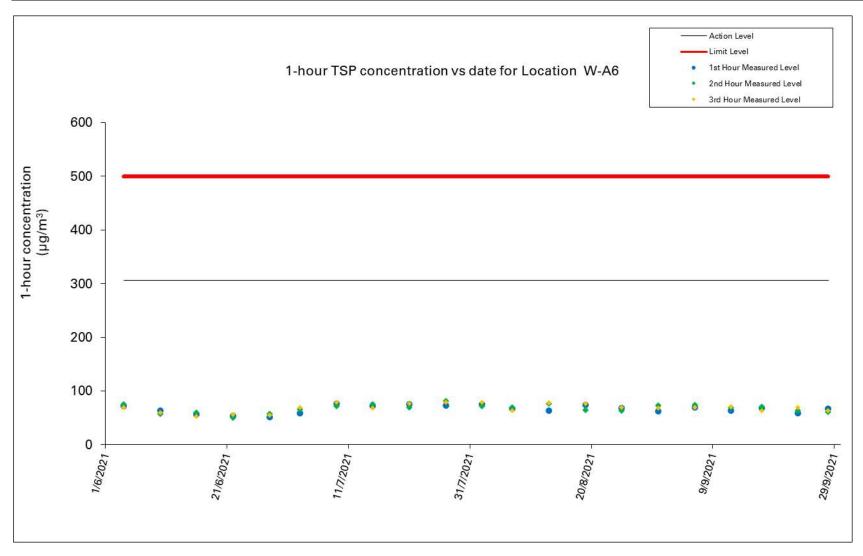
∟001195

Appendix K Location Plan of Noise and Air Quality Monitoring Station

Appendix L Monitoring Data (Air Monitoring)


Location:	Yau Ma Tei Catholic Primary School (Hoi Wang Road) (W-A1)
Monitoring date:	6, 11, 17, 23 and 28 September 2021
Parameter :	TSP 1-hour
Other Factors	Nearby traffic

	1-hour TSP (μg/m ³)										
Date	Weather	Start Time	1 st Hour (μg/m ³)	2 nd Hour (μg/m ³)	3 rd Hour (μg/m ³)						
06/09/2021	Fine	12:57	61	66	68						
11/09/2021	Sunny	10:16	59	64	67						
17/09/2021	Sunny	12:55	60	52	56						
23/09/2021	Cloudy	14:13	54	60	66						
28/09/2021	Sunny	9:19	51	46	49						
Mini	mum: 46 µg/m3			Maximum: 68 µg/n	n3						


Location:	Man Cheong Building (W-A6)
Monitoring date:	6, 11, 17, 23 and 28 September 2021
Parameter :	TSP 1-hour
Other Factors	Nearby traffic

			1-hour TSP (µ	1-hour TSP (μg/m ³)							
Date	Weather	Start Time	1 st Hour (μg/m ³)	2 nd Hour (μg/m ³)	3 rd Hour (μg/m ³)						
06/09/2021	Fine	15:16	70	74	69						
11/09/2021	Sunny	9:31	63	69	71						
17/09/2021	Sunny	9:41	68	71	64						
23/09/2021	Cloudy	13:21	59	63	70						
28/09/2021	Sunny	8:44	67	61	64						
ľ	Minimum: 59 μ	g/m3		Maximum: 74 µg/n	n3						

Contract No. HY/2014/08 Environmental Monitoring & Auditing

Contract No. HY/2014/08 Environmental Monitoring & Auditing

Location:	Yau Ma Tei Catholic Primary School (Hoi Wang Road) (W-A1)
Monitoring date:	6, 11, 17, 23 and 28 September 2021
Parameter :	TSP 24-hour
Other Factors	Nearby traffic

										Date of C	alibration:	6-Sep-21		Slope =	2.2886
		Ca									n due date:	21-Sep-21		Intercept =	36.6670
			Da									23-Sep-21		Slope =	3.3191
										Calibration	n due date:	8-Oct-21		Intercept =	35.3825
Start Date	Weather Condition		Elapse Time			hart Reading	g	Avg Air Temp	Avg Atmospheric Pressure		Standard Air Volume	Filter Weig	ht (g)	Particulate weight	Conc.
	Condition	Initial	Final	Actual (min)	Min	Max	Avg	(°C)	(hPa)	(m ³ /min)	(m ³)	Initial	Final	(g)	$(\mu g/m^3)$
6/9/2021	Fine	5613.9	5637.9	1440.0	39	40	39.5	29.7	1010.5	1.06	1522	2.7737	2.8170	0.0433	28
12/9/2021	Sunny	5637.9	5661.9	1440.0	40	40	40.0	31.2	1002.0	1.09	1563	2.7682	2.8573	0.0891	57
17/9/2021	Sunny	5661.9	5685.9	1440.0	40	41	40.5	29.5	1009.2	1.47	2120	2.7797	2.8849	0.1052	50
23/9/2021	Cloudy	5685.4	5709.4	1440.0	40	40	40.0	28.0	1013.0	1.33	1912	2.7747	2.8163	0.0416	22
28/9/2021	Sunny	5709.4	5733.4	1440.0	40	41	40.5	29.6	1009.6	1.41	2023	2.7482	2.8622	0.1140	56
										Maximum:	57	$\mu g/m^3$	Minimum:	22	$\mu g/m^3$

Location:	Man Cheong Building (W-A6)
Monitoring date:	6, 11, 17, 23 and 28 September 2021
Parameter :	TSP 24-hour
Other Factors	Nearby traffic

		Γ									alibration:	6-Sep-21		2.0662			
											n due date:	21-Sep-21		Intercept =			
			Γ								Date of Calibration: 23-Sep-21						
										Calibration	n due date:	8-Oct-21		Intercept =	35.6576		
Start Date	Weather Condition		Elapse Time Chart Reading Avg Air Temp Pressure				Chart Reading		Chart Reading			Flow Rate	Standard Air Volume	Filter Weig	ht (g)	Particulate weight	Conc.
	Condition	Initial	Final	Actual (min)	Min	Max	Avg	(°C)	(hPa)	(m ³ /min)	(m ³)	Initial	Final	(g)	$(\mu g/m^3)$		
6/9/2021	Fine	5202.0	5226.0	1440.00	39	40	39.5	29.7	1010.5	0.80	1153	2.7727	2.8227	0.0500	43		
12/9/2021	Sunny	5226.0	5250.0	1440.00	40	40	40.0	31.2	1002.0	0.83	1198	2.7760	2.8780	0.1020	85		
17/9/2021	Sunny	5250.0	5274.0	1440.00	39	40	39.5	29.5	1009.2	0.78	1127	2.7769	2.8849	0.1080	96		
23/9/2021	Cloudy	5274.6	5298.6	1440.00	40	40	40.0	28.0	1013.0	1.69	2427	2.7782	2.8288	0.0506	21		
28/9/2021	Sunny	5298.6	5322.6	1440.00	39	40	39.5	29.6	1009.6	1.39	1997	2.7494	2.8857	0.1363	68		
										Maximum:	96	$\mu g/m^3$	Minimum:	21	$\mu g/m^3$		

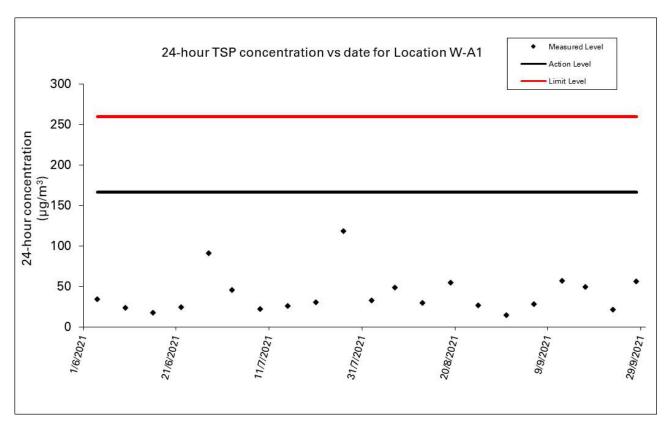


Figure 3: Graphical Illustration of Measured 24-hour TSP (μ g/m³) Levels at W-A1

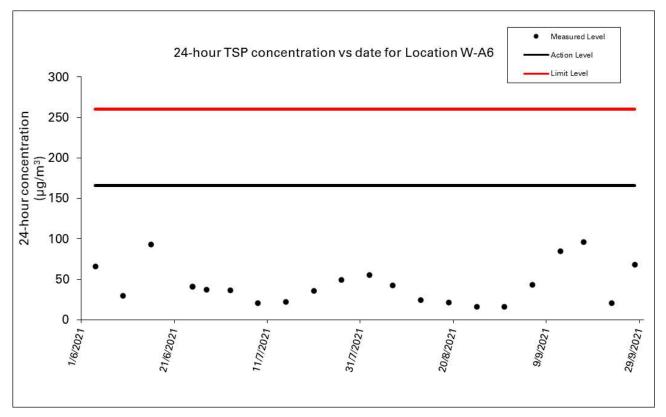
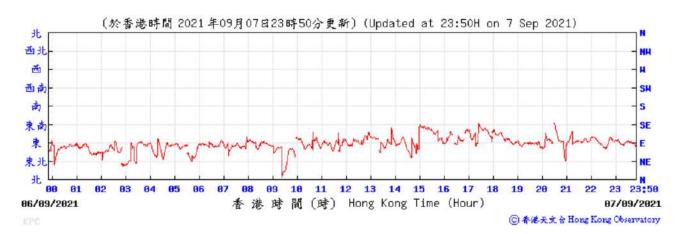



Figure 4: Graphical Illustration of Measured 24-hour TSP (µg/m³) Levels at W-A6


Wind direction data for 6, 7, 11, 12, 17, 18, 23, 24, 28 and 29 September 2021

Wind Direction:

11 12

香港時間(時) Hong Kong Time (Hour)

13 14 15 16 17

18

20 21 22 23

⑦春港天文 含 Hong Kong Observatory

19

SE

E

23:50

18/09/2021

05 06 07

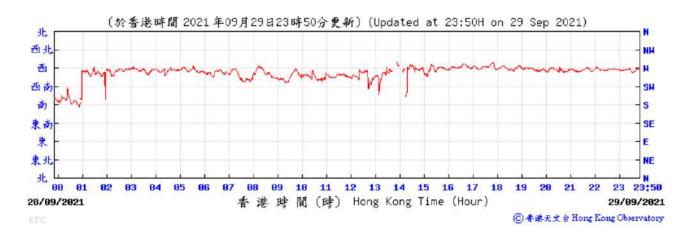
84

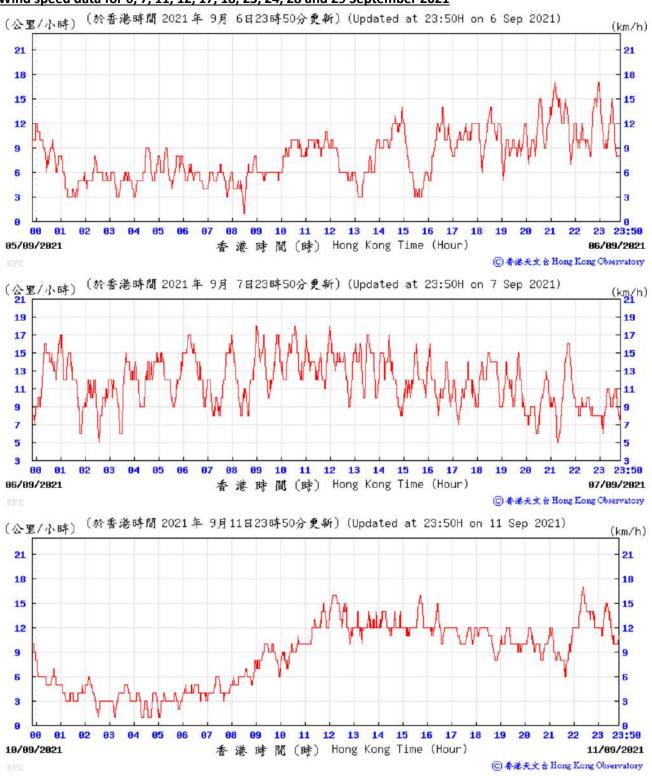
08 09 10

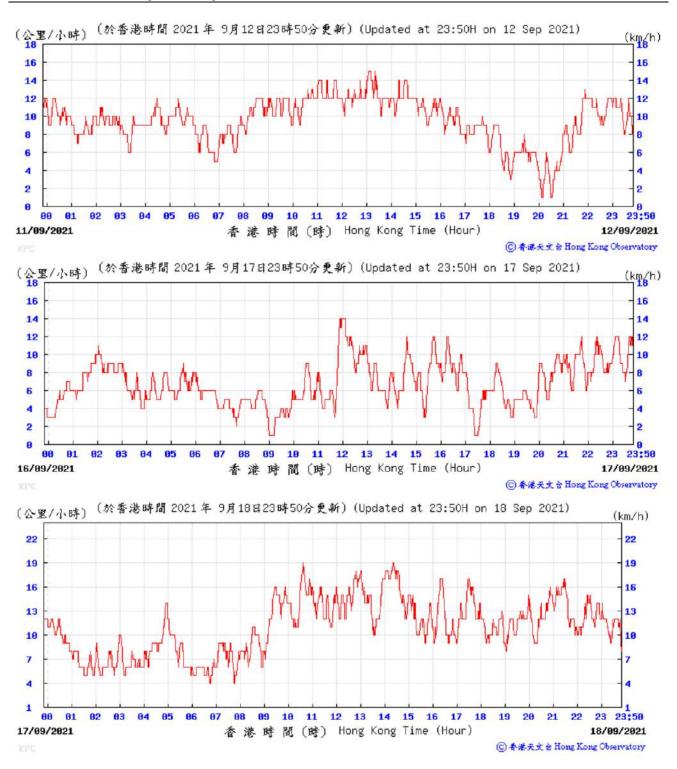

東南東

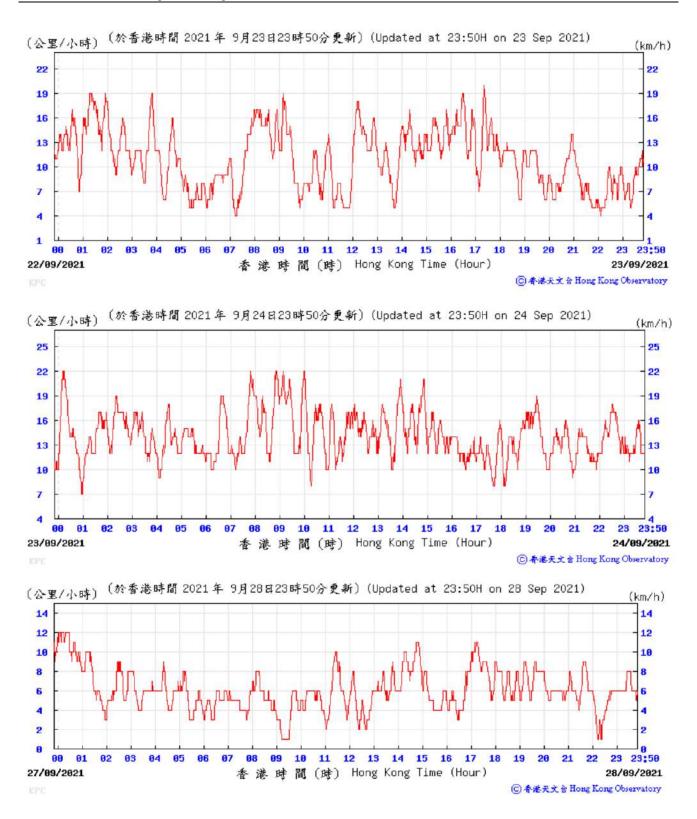
東北

00 01


17/09/2021


82 83





Wind speed data for 6, 7, 11, 12, 17, 18, 23, 24, 28 and 29 September 2021

Appendix M Monitoring Data (Noise)

Location:	Yau Ma Tei Catholic Primary School (Hoi Wang Road) (W-N1A)
Monitoring date:	6, 11, 17, 23 and 28 September 2021
Parameter :	L_{eq}, L_{10}, L_{90}
Other Factors	Nearby traffic
Parameter :	L_{eq}, L_{10}, L_{90}

Date	Weather	Start Time	- End Time	L _{eq}	L_{10}	L ₉₀	Wind speed (m/s)
06/09/2021	Fine	13:08	- 13:38	60.8	62.4	57.9	0.8
11/09/2021	Sunny	10:27	- 10:57	60.6	62.6	58.1	2.8
17/09/2021	Sunny	13:04	- 13:34	59.0	59.6	58.2	1.6
23/09/2021	Cloudy	14:15	- 14:45	60.7	63.0	57.9	3.3
28/09/2021	Sunny	9:21	- 9:51	57.0	60.1	54.0	0.6

Remark: No examination was at W-N1A in the reporting month so limit levels for all monitoring days were 70 dB(A).

Location:	Hydan Place (W-N18)
Monitoring date:	6, 11, 17, 23 and 28 September 2021
Parameter :	L_{eq}, L_{10}, L_{90}
Other Factors	Nearby traffic

Date	Weather	Start Time		End Time	T	La	L ₉₀	Wind
Date	weather	Start Time	-		L _{eq}	L_{10}		speed (m/s)
06/09/2021	Fine	16:27	-	16:57	70.7	73.8	67.2	2.8
11/09/2021	Sunny	12:19	-	12:49	70.1	73.1	66.8	4.2
17/09/2021	Sunny	10:02	-	10:32	71.4	73.0	68.6	1.4
23/09/2021	Cloudy	15:51	-	16:21	69.8	73.1	66.9	3.6
28/09/2021	Sunny	11:49	-	12:19	69.4	73.8	67.7	0.8

Location:	Prosperous Garden Block 1 (W-N25A)
Monitoring date:	6, 11, 17, 23 and 28 September 2021
Parameter :	L_{eq}, L_{10}, L_{90}
Other Factors	Nearby traffic

Date	Weather	Start Time	_	End Time	L _{eq}	L_{10}	L ₉₀	Wind
								speed (m/s)
06/09/2021	Fine	14:06	-	14:36	71.1	75.2	68.6	2.5
11/09/2021	Sunny	11:26	-	11:56	71.0	75.6	68.5	4.2
17/09/2021	Sunny	11:31	-	12:01	71.9	75.1	69.5	1.7
23/09/2021	Cloudy	15:03	-	15:33	70.9	75.4	68.5	4.4
28/09/2021	Sunny	11:05	-	11:35	71.0	75.8	69.3	2.8

Location:	The Coronation Tower 1 (W-P11)
Monitoring date:	6, 11, 17, 23 and 28 September 2021
Parameter :	L_{eq}, L_{10}, L_{90}
Other Factors	Nearby traffic

Date	Weather	Start Time		End Time	т	L ₁₀	L90	Wind
Date	weather	Start Time	-		Leq			speed (m/s)
06/09/2021	Fine	15:39	-	16:09	68.8	70.6	66.6	0.8
11/09/2021	Sunny	13:01	-	13:31	68.6	70.9	66.9	3.3
17/09/2021	Sunny	14:19	-	14:49	71.8	74.4	67.2	1.7
23/09/2021	Cloudy	16:40	-	17:10	68.9	70.9	66.9	4.4
28/09/2021	Sunny	10:14	-	10:44	71.0	74.8	68.7	1.7

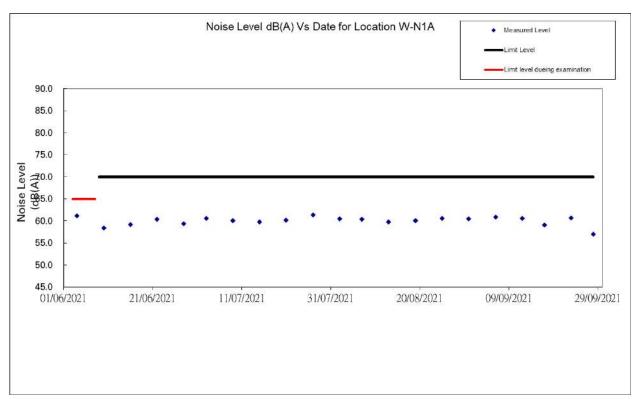


Figure 1: Graphical Illustration of Measured Noise Levels at W-N1A

Remark: No examination was at W-N1A in the reporting month so limit levels for all monitoring days were 70 dB(A).

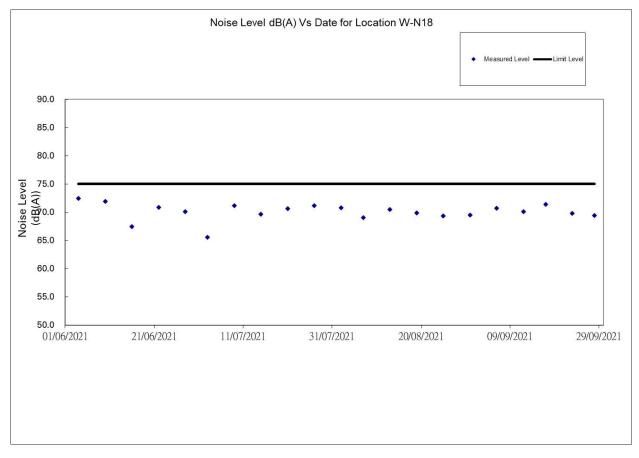


Figure 2: Graphical Illustration of Measured Noise Levels at W-N18

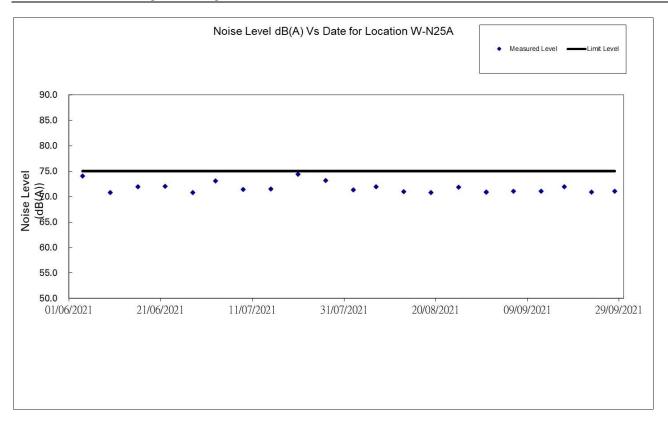


Figure 3: Graphical Illustration of Measured Noise Levels at W-N25A

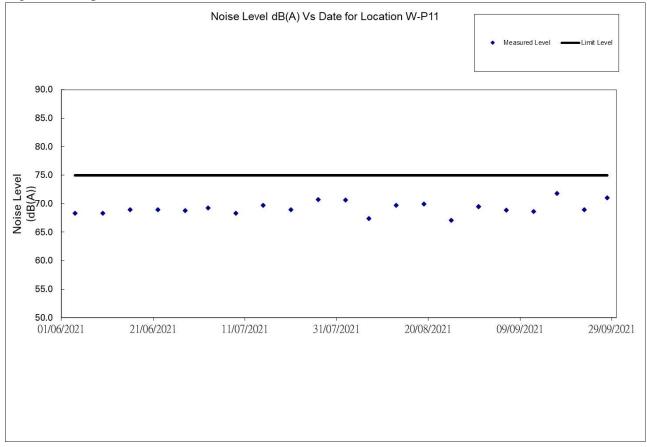


Figure 4: Graphical Illustration of Measured Noise Levels at W-P11

Appendix N Waste Flow Table

Monthly Summary Waste Flow Table

Name of Department: **Highways Department**

 Monthly Summary Waste Flow Table for September 2021
 (All quantities shall be rounded off to 1 decimal place.)

Contract No. / Works Order No.: <u>HY/2014/08</u>

		Actual Quantities of Inert Construction Waste Generated Monthly								
Month	(a)=(b)+(c)+(d)+(e)+(f)+(g)+(h)+(i)+(j)+(k) Total Quantity Generated	(b) Hard Rock and Large Broken Concrete	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill	(f) Imported Fill				
	(in 'tonnes)	(in 'tonnes)	(in 'tonnes)	(in 'tonnes)	(in 'tonnes)	(in 'tonnes)				
Jan-21	9229.4	856.6	0.0	0.0	8262.2	0.0				
Feb-21	4559.4	152.4	0.0	0.0	4274.6	0.0				
Mar-21	9144.7	1428.5	0.0	0.0	6820.2	297.7				
Apr-21	6996.2	408.7	0.0	0.0	6261.1	280.0				
May-21	9933.1	446.4	0.0	0.0	8482.7	961.9				
Jun-21	9814.2	386.5	0.0	0.0	9397.2	0.0				
Sub-total	49677.0	3679.1	0.0	0.0	43498.0	1539.6				
Jul-21	13470.0	620.1	0.0	0.0	12821.0	0.0				
Aug-21	8059.6	116.7	0.0	0.0	7889.7	3.3				
Sep-21	8683.5	673.1	0.0	676.2	7284.0	0.0				
Oct-21										
Nov-21										
Dec-21										
Total	79890.1	5089.0	0.0	676.2	71492.7	1542.9				
2018	51057.9	0.0	0.0	0.0	47715.6	2877.4				
2019	112830.1	541.0	1523.8	13525.0	93132.9	3155.6				
2020	193021.9	58778.0	1205.6	19108.6	112556.8	0.0				
Accumulated Total	436800.0	64408.0	2729.4	33309.8	324898.0	7575.9				

				Act	ual Quantities of <u>Non-ine</u>	rt Construction Waste	e Generated Monthly			
Month	(g) Metals		(h) Paper/ cardboard packaging		(i) Plastics		(j) Chemical Waste		(k) Others, e.g. General Refuse disposed at Landfill	
	(in '(000kg)	(in '0	00kg)	(in '000kg)		(in '000kg)		(in 'tonnes)	
	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	
Jan-21	0.0	0.0	0.6	0.0	0.0	0.0	20.7	0.0	89.3	
Feb-21	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	131.7	
Mar-21	0.0	0.0	0.1	0.0	0.0	0.0	1.6	0.0	596.6	
Apr-21	15.3	0.0	0.5	0.0	0.0	0.0	0.0	0.0	30.6	
May-21	14.9	0.0	0.3	0.0	0.0	0.0	0.0	0.0	26.9	
Jun-21	0.0	0.0	0.6	0.0	0.0	0.0	0.4	0.0	29.5	
Sub-total	30.2	0.0	2.8	0.0	0.0	0.0	22.7	0.0	904.6	
Jul-21	0.0	0.0	0.3	0.0	0.02	0.0	0.0	0.0	28.6	
Aug-21	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	49.3	
Sep-21	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	50.1	
Oct-21										
Nov-21										
Dec-21										
Total	30.2	0.0	3.8	0.0	0.02	0.0	22.7	0.0	1032.6	
2018	28.4	0.0	0.0	0.0	0.0	0.0	2.0	0.0	434.5	
2019	0.0	9.1	3.4	6.8	0.0	0.0	5.2	0.0	927.3	
2020	69.2	0.0	3.3	0.0	0.02	0.0	25.3	0.0	1275.1	
Accumulated Total	127.8	9.1	10.5	6.8	0.04	0.0	55.2	0.0	3669.5	

Remark: Construction waste record for Aug-21 has been updated.

Appendix O Statistics on Complaint, Notifications of Summons and Successful Prosecutions

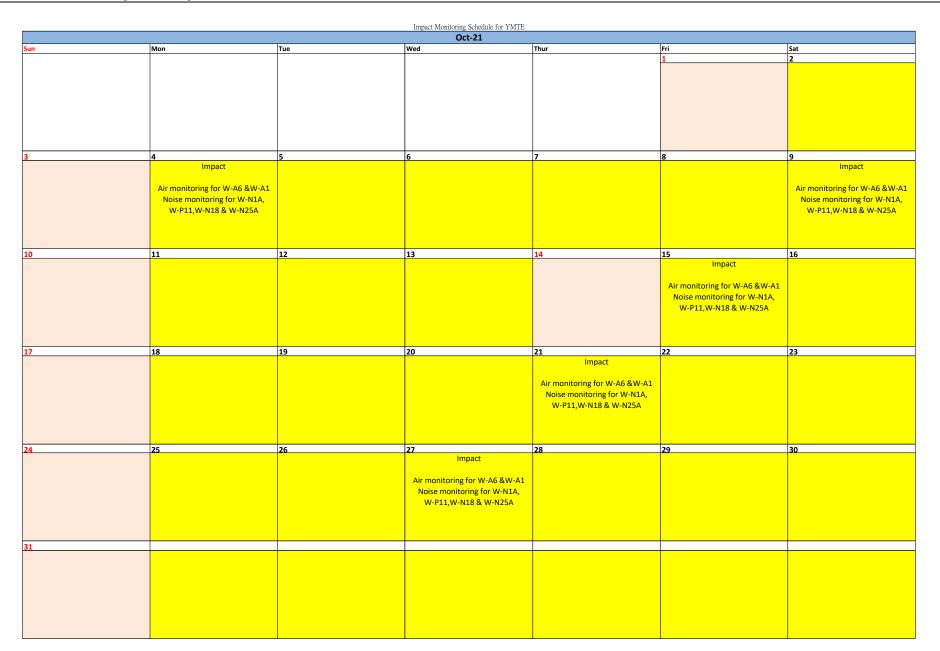
	Statistical Summa	ry of Exceedances						
	Air	Quality						
Location	LocationAction LevelLimit LevelTotal							
W-A1	0	0	0					
W-A6	0	0	0					
	Noise							
Location	Action Level	Limit Level	Total					
W-N1A	0	0	0					
W-N18	0	0	0					
W-N25A	0	0	0					
W-P11	0	0	0					

Statistical Summary of Environmental Complaints

Departing Daried	Environmental Complaint Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature				
1 September 2021- 30 September 2021	0	26	NA				

Statistical Summary of Environmental Non-compliance

Dononting Donied	Environmental Non-compliance Statistics			
Reporting Period	Frequency	Cumulative	Details	
1 September 2021- 30 September 2021	0	1	N/A	


Statistical Summary of Environmental Summons

Reporting Period -	Environmental Summons Statistics		
	Frequency	Cumulative	Details
1 September 2021- 30 September 2021	0	1	N/A

Statistical Summary of Environmental Prosecution

Reporting Period -	Environmental Prosecution Statistics			
	Frequency	Cumulative	Details	
1 September 2021- 30 September 2021	0	0	N/A	

Appendix P Monitoring Schedule of the Coming Month

